37 research outputs found

    Climatic changes in the Urals over the past millennium. An analysis of geothermal and meteorological data

    No full text
    International audienceThis investigation is based on a study of two paleoclimatic curves obtained in the Urals (51?59° N, 58?61° E): i) a ground surface temperature history (GSTH) reconstruction since 800 AD and ii) meteorological data for the last 170 years. Temperature anomalies measured in 49 boreholes were used for the GSTH reconstruction. It is shown that a traditional averaging of the histories leads to the lowest estimates of amplitude of past temperature fluctuations. The interval estimates method, accounting separately for the rock's thermal diffusivity variations and the influence of a number of non-climatic causes, was used for obtaining the average GSTH. Joint analysis of GSTH and meteorological data bring us to the following conclusions. First, ground surface temperatures in the Medieval maximum during 1100?1200 was 0.38 K higher than the 20th century mean temperature (1900?1960). The Little Ice Age cooling was culminated in 1720 when surface mean temperature was 1.58 K below than the 20th century mean temperature. Secondly, contemporary warming began approximately one century prior to the first instrumental measurements in the Urals. The rate of warming was +0.25K/100years in the 18th century, +1.15 K/100years in the 19th and +0.75 K/100years in the first 80 years of the 20th. Finally, the mean rate of temperature warming increased in final decades of 20th century. An analysis of linear regression coefficients in running intervals of 11, 21 and 31 years, shows that there were periods of warming with almost the same rates in the past, including the 19th century

    30,000 YEARS OF GROUND SURFACE TEMPERATURE AND HEAT FLUX CHANGES IN KARELIA RECONSTRUCTED FROM BOREHOLE TEMPERATURE DATA

    Get PDF
    Analyses of temperature-depth profiles logged in deep boreholes (> 1 km) permit the reconstruction of ground surface temperature (GST) and surface heat flux (SHF) histories in the period of global climate change at the border of the Pleistocene and the Holocene. We reconstructed past GST and SHF histories using data obtained from the 3.5-km-deep Onega borehole (Karelia, north-west Russia). The resulting reconstructions include information on the basal thermal regime of the Scandinavian Ice Sheet, which covered the region in the Last Glacial Maximum (LGM). The surface temperature history reveals a high amplitude of Pleistocene/ Holocene warming equal to 18–20 K. The heat flux changes precede the surface temperature changes and are close to the variations of insolation at a latitude of 60°N. A comparison of the reconstructed GST and SHF histories with the records of carbon dioxide contents in Antarctic ice cores shows that CO2 changes are much closer to temperature changes than they are to heat flux changes

    Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era

    Get PDF
    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.(TABLE)Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013').This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product.This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike

    Late Pleistocene–Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia)

    No full text
    We use geothermal reconstruction of the ground surface temperature (GST) history early obtained in the Middle Urals to determine the surface heat flux (SHF) history over the past 35 kyr. A new algorithm of GST–SHF transformation was applied to solve this problem. The timescale of geothermal reconstructions has been corrected by comparing the estimated heat flux and annual insolation at the latitude of 60° N. The consistency of SHF and insolation changes on the interval 35–6 kyr BP with the linear correlation coefficient <i>R</i> = 0.99 points to orbital factors as the main cause of climatic changes during the Pleistocene–Holocene transition. The amplitude of SHF variations is about 1.3% of the insolation change amplitude. The increase of carbon dioxide concentrations lagged by 2–3 kyr from the SHF increase and occurred synchronously with GST changes
    corecore