19 research outputs found

    INT reduction is a valid proxy for eukaryotic plankton respiration despite the inherent toxicity of INT and differences in cell wall structure

    Get PDF
    The reduction of 2-para (iodophenyl)-3(nitrophenyl)-5(phenyl) tetrazolium chloride (INT) is increasingly being used as an indirect method to measure plankton respiration. Its greater sensitivity and shorter incubation time compared to the standard method of measuring the decrease in dissolved oxygen concentration, allows the determination of total and size-fractionated plankton respiration with higher precision and temporal resolution. However, there are still concerns as to the method’s applicability due to the toxicity of INT and the potential differential effect of plankton cell wall composition on the diffusion of INT into the cell, and therefore on the rate of INT reduction. Working with cultures of 5 marine plankton (Thalassiosira pseudonana CCMP1080/5, Emiliania huxleyi RCC1217, Pleurochrysis carterae PLY-406, Scrippsiella sp. RCC1720 and Oxyrrhis marina CCMP1133/5) which have different cell wall compositions (silica frustule, presence/absence of calcite and cellulose plates), we demonstrate that INT does not have a toxic effect on oxygen consumption at short incubation times. There was no difference in the oxygen consumption of a culture to which INT had been added and that of a replicate culture without INT, for periods of time ranging from 1 to 7 hours. For four of the cultures (T. pseudonana CCMP1080/5, P. carterae PLY-406, E. huxleyi RCC1217, and O. marina CCMP1133/5) the log of the rates of dissolved oxygen consumption were linearly related to the log of the rates of INT reduction, and there was no significant difference between the regression lines for each culture (ANCOVA test, F = 1.696, df = 3, p = 0.18). Thus, INT reduction is not affected by the structure of the plankton cell wall and a single INT reduction to oxygen consumption conversion equation is appropriate for this range of eukaryotic plankton. These results further support the use of the INT technique as a valid proxy for marine plankton respiration

    Inflammation, immunity, and vaccines for Helicobacter pylori

    No full text
    Helicobacter pylori infects almost half of the population worldwide and represents the major cause of gastroduodenal diseases, such as duodenal and gastric ulcer, gastric adenocarcinoma, autoimmune gastritis, and B-cell lymphoma of mucosa-associated lymphoid tissue. Helicobacter pylori induces the activation of a complex and fascinating cytokine and chemokine network in the gastric mucosa. Different bacterial and environmental factors, other concomitant infections, and host genetics may influence the balance between mucosal tolerance and inflammation in the course of H. pylori infection. An inverse association between H. pylori prevalence and the frequencies of asthma and allergies was demonstrated, and the neutrophil activating protein of H. pylori was shown to inhibit the allergic inflammation of bronchial asthma. During the last year, significant progress was made on the road to the first efficient vaccine for H. pylori that will represent a novel and very important bullet against both infection and gastric cancer

    Low activities of digestive enzymes in the guts of herbivorous grouse (Aves: Tetraoninae)

    No full text
    Avian herbivores face the exceptional challenge of digesting recalcitrant plant material while under the selective pressure to reduce gut mass as an adaptation for fight. One mechanism by which avian herbivores may overcome this challenge is to maintain high activities of intestinal enzymes that facilitate the digestion and absorption of nutrients. However, previous studies in herbivorous animals provide equivocal evidence as to how activities of digestive enzymes may be adapted to herbivorous diets. For example, “rate-maximizing” herbivores generally exhibit rapid digesta transit times and high activities of digestive enzymes. Conversely, “yield-maximizing” herbivores utilize long gut retention times and express lower activities of digestive enzymes. Here, we investigated the activities of digestive enzymes (maltase, sucrase, aminopeptidase-N) in the guts of herbivorous grouse (Aves: Tetraoninae) and compared them to activities measured in several other avian species. We found that several grouse species exhibit activities of enzymes that are dramatically lower than those measured in other birds. We propose that grouse may use a “yield-maximizing” strategy of digestion, which is characterized by relatively long gut retention times and generally lower enzyme activities. These low activities of intestinal digestive enzyme could have ecological and evolutionary consequences, as grouse regularly consume plants with compounds known to inhibit digestive enzymes. However, more comprehensive studies on passage rates, digestibility, and microbial contributions will be necessary to understand the full process of digestion in herbivorous birds.acceptedVersio
    corecore