380 research outputs found

    GNSS Reliability Testing in Signal-Degraded Scenario

    Get PDF
    Multiconstellation satellite navigation is critical in signal-degraded environments where signals are strongly corrupted. In this case, the use of a single GNSS system does not guarantee an accurate and continuous positioning. A possible approach to solve this problem is the use of multiconstellation receivers that provide additional measurements and allows robust reliability testing; in this work, a GPS/GLONASS combination is considered. In urban scenario, a modification of the classical RAIM technique is necessary taking into account frequent multiple blunders. The FDE schemes analysed are the "Observation Subset Testing," "Forward-Backward Method," and "Danish Method"; they are obtained by combining different basic statistical tests. The considered FDE methods are modified to optimize their behaviour in urban scenario. Specifically a preliminary check is implemented to screen out bad geometries. Moreover, a large blunder could cause multiple test failures; hence, a separability index is implemented to avoid the incorrect exclusion of blunder-free measurements. Testing the RAIM algorithms of GPS/GLONASS combination to verify the benefits relative to GPS only case is a main target of this work too. The performance of these methods is compared in terms of RMS and maximum error for the horizontal and vertical components of position and velocity

    The Cool ISM in Elliptical Galaxies. II. Gas Content in the Volume - Limited Sample and Results from the Combined Elliptical and Lenticular Surveys

    Full text link
    We report new observations of atomic and molecular gas in a volume limited sample of elliptical galaxies. Combining the elliptical sample with an earlier and similar lenticular one, we show that cool gas detection rates are very similar among low luminosity E and SO galaxies but are much higher among luminous S0s. Using the combined sample we revisit the correlation between cool gas mass and blue luminosity which emerged from our lenticular survey, finding strong support for previous claims that the molecular gas in ellipticals and lenticulars has different origins. Unexpectedly, however, and contrary to earlier claims, the same is not true for atomic gas. We speculate that both the AGN feedback and merger paradigms might offer explanations for differences in detection rates, and might also point towards an understanding of why the two gas phases could follow different evolutionary paths in Es and S0s. Finally we present a new and puzzling discovery concerning the global mix of atomic and molecular gas in early type galaxies. Atomic gas comprises a greater fraction of the cool ISM in more gas rich galaxies, a trend which can be plausibly explained. The puzzle is that galaxies tend to cluster around molecular-to-atomic gas mass ratios near either 0.05 or 0.5.Comment: 37 pages, including 4 tables and 12 figures. Accepted for publication in the Astrophysical Journa

    An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration

    Full text link
    While statisticians are well-accustomed to performing exploratory analysis in the modeling stage of an analysis, the notion of conducting preliminary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage) of an analysis is an area which we feel deserves much further attention. Towards this aim, this paper proposes a general-purpose algorithm for automatic density exploration. The proposed exploration algorithm combines and expands upon components from various adaptive Markov chain Monte Carlo methods, with the Wang-Landau algorithm at its heart. Additionally, the algorithm is run on interacting parallel chains -- a feature which both decreases computational cost as well as stabilizes the algorithm, improving its ability to explore the density. Performance is studied in several applications. Through a Bayesian variable selection example, the authors demonstrate the convergence gains obtained with interacting chains. The ability of the algorithm's adaptive proposal to induce mode-jumping is illustrated through a trimodal density and a Bayesian mixture modeling application. Lastly, through a 2D Ising model, the authors demonstrate the ability of the algorithm to overcome the high correlations encountered in spatial models.Comment: 33 pages, 20 figures (the supplementary materials are included as appendices

    Identifying foundation species in North American forests using long‐term data on ant assemblage structure

    Get PDF
    Foundation species are locally abundant and uniquely control associated biodiversity, whereas dominant species are locally abundant but are thought to be replaceable in ecological systems. It is important to distinguish foundation from dominant species to direct conservation efforts. Long‐term studies that remove abundant species while measuring community dynamics have the potential to (1) aid in the identification of foundation vs. dominant species and, (2) once a foundation species is identified, determine how long its effects persist within a community after its loss. Long‐term data on ant assemblages within two canopy‐manipulation experiments—the Harvard Forest Hemlock Removal Experiment (HF‐HeRE) and the Black Rock Future of Oak Forests Experiment (BRF‐FOFE)—provide insights into how ant assemblages change and reassemble following the loss of Tsuga canadensis or Quercus spp. Previous research documented foundation species effects on ants in the HF‐HeRE for up to four years after T. canadensis loss. Six additional years of data at HF‐HeRE presented for the first time here show that removal of T. canadensis resulted in taxonomic and some measures of functional shifts in ant assemblages that persisted for ten years, further supporting the hypothesis that T. canadensis is a foundation species at Harvard Forest. In contrast, ant assemblages at BRF‐FOFE varied little regardless of whether oaks or other tree species were removed from the canopy, suggesting that Quercusspecies do not act as foundation species at Black Rock Forest. Deer and moose exclosures within each experiment also allowed for comparisons between effects on ants of foundation or dominant tree species relative to effects of large herbivores. At HF‐HeRE, effects of T. canadensis were stronger than effects of large herbivores on taxonomic and functional diversity of ant assemblages. At BRF‐FOFE, in contrast, effects of Quercus species were weaker than effects of large herbivores on ant taxonomic diversity and some measures of ant functional diversity. These findings illustrate the importance of distinguishing between the roles of irreplaceable foundation species and replaceable dominant ones in forested ecosystems along with other drivers of biodiversity (e.g., herbivory)

    Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles

    Get PDF
    The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein-protein interaction prediction and design methods. © 2013 American Chemical Society

    Glucocorticoids link forest type to local abundance in tropical birds

    Get PDF
    1. Selective logging is a major driver of environmental changes in the tropics. Recently, there has been increasing interest in understanding which traits make bird species resilient or vulnerable to such changes. Physiological stress mediated by the steroid hormone corticosterone (CORT) might underlie changes in local abundance of species because it regulates arange of body functions and behaviours to maintain homeostasis in changing environments. 2. We conducted a three‐year study to assess: (i) the variation in CORT levels in feathers (where CORT is deposited during the moult) of ten understory bird species across both unlogged old‐growth forest and selectively logged forest in Borneo, (ii) how this variation is associated with within‐year variation in population abundance between forest types, and (iii) whether the difference in feather CORT (fCORT) between co‐specific populations living in unlogged and logged forests in one year is related with their difference in population abundance the following year. 3. We used effect size estimates to measure standardized magnitude and direction of fCORT changes between unlogged and selectively logged forest. We found small to large effect sizes, indicating large among species variation in physiological acclimatization to changes in forest conditions. In 2016 and 2018, species with relatively higher fCORT in unlogged forest were relatively more abundant in logged forest in the same year; in 2017, species with relatively higher fCORT in logged forest were relatively more abundant in logged forest. Importantly, we found that for a given species, the difference in fCORT at year (x) between unlogged and logged forests was negatively related with a difference in its local abundance between the two forest types in the following year (x+1). 4. Our results point to glucocorticoid hormones as potential mediators of carry‐over effects on population abundance due to direct and indirect effects of silvicultural practices in tropical forests of Borneo, suggesting fCORT as a potential marker of population changes

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Background frequencies for residue variability estimates: BLOSUM revisited

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shannon entropy applied to columns of multiple sequence alignments as a score of residue conservation has proven one of the most fruitful ideas in bioinformatics. This straightforward and intuitively appealing measure clearly shows the regions of a protein under increased evolutionary pressure, highlighting their functional importance. The inability of the column entropy to differentiate between residue types, however, limits its resolution power.</p> <p>Results</p> <p>In this work we suggest generalizing Shannon's expression to a function with similar mathematical properties, that, at the same time, includes observed propensities of residue types to mutate to each other. To do that, we revisit the original construction of BLOSUM matrices, and re-interpret them as mutation probability matrices. These probabilities are then used as background frequencies in the revised residue conservation measure.</p> <p>Conclusion</p> <p>We show that joint entropy with BLOSUM-proportional probabilities as a reference distribution enables detection of protein functional sites comparable in quality to a time-costly maximum-likelihood evolution simulation method (rate4site), and offers greater resolution than the Shannon entropy alone, in particular in the cases when the available sequences are of narrow evolutionary scope.</p

    Copycat dynamics in leaderless animal group navigation

    Get PDF
    Background: Many animals are known to have improved navigational efficiency when moving together as a social group. One potential mechanism for social group navigation is known as the 'many wrongs principle', where information from many inaccurate compasses is pooled across the group. In order to understand how animal groups may use the many wrongs principle to navigate, it is important to consider how directional information is transferred and shared within the group. Methods: Here we use an individual-based model to explore the information-sharing and copying dynamics of a leaderless animal group navigating towards a target in a virtual environment. We assume that communication and information-sharing is indirect and arises through individuals partially copying the movement direction of their neighbours and weighting this information relative to their individual navigational knowledge. Results: We find that the best group navigation performance occurs when individuals directly copy the direction of movement of a subset of their neighbours while only giving a small (6%) weighting to their individual navigational knowledge. Surprisingly, such a strategy is shown to be highly efficient regardless of the level of individual navigational error. We find there is little relative improvement in navigational efficiency when individuals copy from more than 7 influential neighbours. Conclusions: Our findings suggest that we would expect navigating group-living animals to predominantly copy the movement of others rather than relying on their own navigational knowledge. We discuss our results in the context of individual and group navigation behaviour in animals

    Insights into the migration of the European Roller from ring recoveries

    Get PDF
    AbstractDespite recent advances in avian tracking technology, archival devices still present several limitations. Traditional ring recoveries provide a complementary method for studying migratory movements, particularly for cohorts of birds with a low return rate to the breeding site. Here we provide the first international analysis of ring recovery data in the European Roller Coracias garrulus, a long-distance migrant of conservation concern. Our data comprise 58 records of Rollers ringed during the breeding season and recovered during the non-breeding season. Most records come from Eastern Europe, half are of juveniles and over three quarters are of dead birds. Thus, ring recoveries provide migration data for cohorts of Rollers—juveniles and unsuccessful migrants—for which no information currently exists, complementing recent tracking studies. Qualitatively, our results are consistent with direct tracking studies, illustrating a broad-front migration across the Mediterranean Basin in autumn and the use of the Arabian Peninsula by Rollers from eastern populations in spring. Autumn movements were, on average, in a more southerly direction for juveniles than adults, which were more easterly. Juvenile autumn recovery direction also appeared to be more variable than in adults, though this difference was not statistically significant. This is consistent with juveniles following a naïve vector-based orientation program, and perhaps explains the ‘moderate’ migratory connectivity previously described for the Roller. In the first (qualitative) analysis of Roller non-breeding season mortality, we highlight the high prevalence of shooting. The recovery age ratio was juvenile-biased in autumn but adult-biased in spring. Although not statistically significant, this difference points towards a higher non-breeding season mortality of juveniles than adults. Our study demonstrates the complementarity of ring recoveries to direct tracking, providing an insight into the migration of juvenile Rollers and non-breeding season mortality
    corecore