78 research outputs found

    Nonlinear force-free field modelling of solar coronal jets in theoretical configurations

    Get PDF
    Coronal jets occur frequently on the Sun, and may contribute significantly to the solar wind. With the suite of instruments available now, we can observe these phenomena in greater detail than ever before. Modeling and simulations can assist further in understanding the dynamic processes involved, but previous studies tend to consider only one mechanism (e.g. emergence or rotation) for the origin of the jet. In this study we model a series of idealised archetypal jet configurations and follow the evolution of the coronal magnetic field. This is a step towards understanding these idealised situations before considering their observational counterparts. Several simple situations are set up for the evolution of the photospheric magnetic field: a single parasitic polarity rotating or moving in a circular path; as well as opposite polarity pairs involved in flyby (shearing), cancellation or emergence; all in the presence of a uniform, open background magnetic field. The coronal magnetic field is evolved in time using a magnetofrictional relaxation method. While magnetofriction cannot accurately reproduce the dynamics of an eruptive phase, the structure of the coronal magnetic field, as well as the build up of electric currents and free magnetic energy are instructive. Certain configurations and motions produce a flux rope and allow the significant build up of free energy, reminiscent of the progenitors of so-called blowout jets, whereas other, simpler configurations are more comparable to the standard jet model. The next stage is a comparison with observed coronal jet structures and their corresponding photospheric evolution

    Self-organized braiding in solar coronal loops

    Get PDF
    In this paper, we investigate the evolution of braided solar coronal loops. We assume that coronal loops consist of several internal strands which twist and braid about each other. Reconnection between the strands leads to small flares and heating of the loop to X-ray temperatures. Using a method of generating and releasing braid structure similar to a forest fire model, we show that the reconnected field lines evolve to a self-organised critical state. In this state, the frequency distributions of coherent braid sequences as well as flare energies follow power law distributions. We demonstrate how the presence of net helicity in the loop alters the distribution laws.Leverhulme TrustAI

    Measurement of the Bs Lifetime in Fully and Partially Reconstructed Bs -> Ds- (phi pi-)X Decays in pbar-p Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a measurement of the Bs lifetime in fully and partially reconstructed Bs -> Ds(phi pi)X decays in 1.3 fb-1 of pbar-p collisions at sqrt(s) = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We measure tau(Bs) = 1.518 +/- 0.041 (stat.) +/- 0.027 (syst.) ps. The ratio of this result and the world average B0 lifetime yields tau(Bs)/tau(B0) = 0.99 +/-0.03, which is in agreement with recent theoretical predictions.Comment: submitted to Phys. Rev. Let

    Observation of the Y(4140)Y(4140) structure in the J/ψ ϕJ/\psi\,\phi Mass Spectrum in B±→J/ψ ϕKB^\pm\to J/\psi\,\phi K cays

    Get PDF
    The observation of the Y(4140)Y(4140) structure in B±→J/ψ ϕK±B^\pm\rightarrow J/\psi\,\phi K^\pm decays produced in pˉp\bar{p} p collisions at \sqrt{s}=1.96~\TeV is reported with a statistical significance greater than 5 standard deviations. A fit to the J/ψ ϕJ/\psi\,\phi mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of 19−5+619^{+6}_{-5} resonance events, and resonance mass and width of 4143.4^{+2.9}_{-3.0}(\mathrm{stat})\pm0.6(\mathrm{syst})~\MeVcc and 15.3^{+10.4}_{-6.1}(\mathrm{stat})\pm2.5(\mathrm{syst})~\MeVcc respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.Comment: 7 pages, 2 figures, submited to Phys. Rev. Let

    Search for charged Higgs bosons in decays of top quarks in p-pbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    7 pages, 2 figuresWe report the recent charged Higgs search in top quark decays in 2.2/fb CDF data. This is the first attempt to search for charged Higgs using fully reconstructed mass assuming H->c-sbar in small tan beta region. No evidence of a charged Higgs is observed in the CDF data, hence 95% upper limits are placed at B(t->H+b)We report on the first direct search for charged Higgs bosons decaying into cs̅ in tt̅ events produced by pp̅ collisions at √s=1.96  TeV. The search uses a data sample corresponding to an integrated luminosity of 2.2  fb-1 collected by the CDF II detector at Fermilab and looks for a resonance in the invariant mass distribution of two jets in the lepton+jets sample of tt̅ candidates. We observe no evidence of charged Higgs bosons in top quark decays. Hence, 95% upper limits on the top quark decay branching ratio are placed at B(t→H+b)< 0.1 to 0.3 for charged Higgs boson masses of 60 to 150  GeV/c2 assuming B(H+→cs̅ )=1.0. The upper limits on B(t→H+b) are also used as model-independent limits on the decay branching ratio of top quarks to generic scalar charged bosons beyond the standard model.Peer reviewe

    Mapping and characterization of structural variation in 17,795 human genomes

    Get PDF
    A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0–11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced

    Magnetohydrodynamic turbulence of coronal active regions and the distribution of nanoflares

    No full text
    Fil:Dmitruk, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gómez, D.O. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Nonlinear energy transfer in solar magnetic loops

    No full text
    Fil:Gómez, D.O. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    • …
    corecore