744 research outputs found

    Efficacy of social cognition and interaction training in outpatients with schizophrenia spectrum disorders: randomized controlled trial

    Get PDF
    Given the relationship between social cognition and functional outcome in schizophrenia, a number of social cognitive interventions have been developed, including Social Cognition Interaction Training (SCIT), a group-based, comprehensive, manualized intervention. In the current trial, we examined SCIT efficacy as well as potential moderators of treatment effects. Fifty-one outpatients were randomized to SCIT or a wait-list-control (WLC), with assessments of social cognition, neurocognition, self-report, symptoms, and functioning conducted at baseline and end of the active phase. Relative to WLC, we did not find significant improvements for SCIT on neurocognition, social cognition, self-report, or symptoms, though there was a trend-level, medium effect favoring the SCIT condition on interpersonal and instrumental role function. Post-hoc analyses indicated that baseline neurocognition did not impact degree of social cognitive or functional change. Shorter duration of illness was significantly associated with better post-training neurocognition and self-esteem and, at trend-level with better symptoms and social functioning. We discuss the importance of outcome measure selection and the need for continued evaluation of potential treatment moderators in order to better match people to existing treatments. Clinical trial registration: Clinicaltrials.gov, Identifier NCT00587561

    The road to deterministic matrices with the restricted isometry property

    Get PDF
    The restricted isometry property (RIP) is a well-known matrix condition that provides state-of-the-art reconstruction guarantees for compressed sensing. While random matrices are known to satisfy this property with high probability, deterministic constructions have found less success. In this paper, we consider various techniques for demonstrating RIP deterministically, some popular and some novel, and we evaluate their performance. In evaluating some techniques, we apply random matrix theory and inadvertently find a simple alternative proof that certain random matrices are RIP. Later, we propose a particular class of matrices as candidates for being RIP, namely, equiangular tight frames (ETFs). Using the known correspondence between real ETFs and strongly regular graphs, we investigate certain combinatorial implications of a real ETF being RIP. Specifically, we give probabilistic intuition for a new bound on the clique number of Paley graphs of prime order, and we conjecture that the corresponding ETFs are RIP in a manner similar to random matrices.Comment: 24 page

    Enhancing Interdisciplinary Instruction in General and Special Education: Thematic Units and Technology

    Get PDF
    This article discusses interdisciplinary thematic units in the context of special and general education curricula and focuses on ways technology can be used to enhance interdisciplinary thematic units. Examples of curriculum integration activities enhanced by technology are provided in the context of productivity tools, presentation and multimedia tools, contextual themed software, and Web-based activities.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Correlation effects in ionic crystals: I. The cohesive energy of MgO

    Full text link
    High-level quantum-chemical calculations, using the coupled-cluster approach and extended one-particle basis sets, have been performed for (Mg2+)n (O2-)m clusters embedded in a Madelung potential. The results of these calculations are used for setting up an incremental expansion for the correlation energy of bulk MgO. This way, 96% of the experimental cohesive energy of the MgO crystal is recovered. It is shown that only 60% of the correlation contribution to the cohesive energy is of intra-ionic origin, the remaining part being caused by van der Waals-like inter-ionic excitations.Comment: LaTeX, 20 pages, no figure

    Stability of the Scalar Potential and Symmetry Breaking in the Economical 3-3-1 Model

    Get PDF
    A detailed study of the criteria for stability of the scalar potential and the proper electroweak symmetry breaking pattern in the economical 3-3-1 model, is presented. For the analysis we use, and improve, a method previously developed to study the scalar potential in the two-Higgs-doublet extension of the standard model. A new theorem related to the stability of the potential is stated. As a consequence of this study, the consistency of the economical 3-3-1 model emerges.Comment: to be published in EPJ C, 13 page

    Grain growth of natural and synthetic ice at 0 °C

    Get PDF
    Grain growth can modify the microstructure of natural ice, including the grain size and crystallographic preferred orientation (CPO). To better understand grain-growth processes and kinetics, we compared microstructural data from synthetic and natural ice samples of similar starting grain sizes that were annealed at the solidus temperature (0 ∘C) for durations of a few hours to 33 d. The synthetic ice has a homogeneous initial microstructure characterized by polygonal grains, little intragranular distortion, few bubbles, and a near-random CPO. The natural ice samples were subsampled from ice cores acquired from the Priestley Glacier, Antarctica. This natural ice has a heterogeneous microstructure characterized by a considerable number of air bubbles, widespread intragranular distortion, and a CPO. During annealing, the average grain size of the natural ice barely changes, whereas the average grain size of the synthetic ice gradually increases. These observations demonstrate that grain growth in natural ice can be much slower than in synthetic ice and therefore that the grain-growth law derived from synthetic ice cannot be directly applied to estimate the grain-size evolution in natural ice with a different microstructure. The microstructure of natural ice is characterized by many bubbles that pin grain boundaries. Previous studies suggest that bubble pinning provides a resisting force that reduces the effective driving force of grain-boundary migration and is therefore linked to the inhibition of grain growth observed in natural ice. As annealing progresses, the number density (number per unit area) of bubbles on grain boundaries in the natural ice decreases, whilst the number density of bubbles in the grain interiors increases. This observation indicates that some grain boundaries sweep through bubbles, which should weaken the pinning effect and thus reduce the resisting force for grain-boundary migration. Some of the Priestley ice grains become abnormally large during annealing. We speculate that the contrast of dislocation density amongst neighbouring grains, which favours the selected growth of grains with low dislocation densities, and bubble pinning, which inhibits grain growth, are tightly associated with abnormal grain growth. The upper 10 m of the Priestley ice core has a weaker CPO and better-developed second maximum than deeper samples. The similarity of this difference to the changes observed in annealing experiments suggests that abnormal grain growth may have occurred in the upper 10 m of the Priestley Glacier during summer warming

    From Coherent Modes to Turbulence and Granulation of Trapped Gases

    Full text link
    The process of exciting the gas of trapped bosons from an equilibrium initial state to strongly nonequilibrium states is described as a procedure of symmetry restoration caused by external perturbations. Initially, the trapped gas is cooled down to such low temperatures, when practically all atoms are in Bose-Einstein condensed state, which implies the broken global gauge symmetry. Excitations are realized either by imposing external alternating fields, modulating the trapping potential and shaking the cloud of trapped atoms, or it can be done by varying atomic interactions by means of Feshbach resonance techniques. Gradually increasing the amount of energy pumped into the system, which is realized either by strengthening the modulation amplitude or by increasing the excitation time, produces a series of nonequilibrium states, with the growing fraction of atoms for which the gauge symmetry is restored. In this way, the initial equilibrium system, with the broken gauge symmetry and all atoms condensed, can be excited to the state, where all atoms are in the normal state, with completely restored gauge symmetry. In this process, the system, starting from the regular superfluid state, passes through the states of vortex superfluid, turbulent superfluid, heterophase granular fluid, to the state of normal chaotic fluid in turbulent regime. Both theoretical and experimental studies are presented.Comment: Latex file, 25 pages, 4 figure

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore