33 research outputs found

    Development of the RIOT Web Service and Information Technologies to enable mechanism reduction for HCCI simulations.

    Get PDF
    Abstract. New approaches are being explored to facilitate multidisciplinary collaborative research of Homogenous Charge Compression Ignition (HCCI) combustion processes. In this paper, collaborative sharing of the Range Identification and Optimization Toolkit (RIOT) and related data and models is discussed. RIOT is a developmental approach to reduce the computational of detailed chemical kinetic mechanisms, enabling their use in modeling kinetically controlled combustion applications such as HCCI. These approaches are being developed and piloted as a part of the Collaboratory for Multiscale Chemical Sciences (CMCS) project. The capabilities of the RIOT code are shared through a portlet in the CMCS portal that allows easy specification and processing of RIOT inputs, remote execution of RIOT, tracking of data pedigree, and translation of RIOT outputs to a table view and to a commonly-used mechanism format. Introduction The urgent need for high-efficiency, low-emission energy utilization technologies for transportation, power generation, and manufacturing processes presents difficult challenges to the combustion research community. The needed predictive understanding requires systematic knowledge across the full range of physical scales involved in combustion processes -from the properties and interactions of individual molecules to the dynamics and products of turbulent multi-phase reacting flows. Innovative experimental techniques and computational approaches are revolutionizing the rate at which chemical science research can produce the new information necessary to advance our combustion knowledge. But the increased volume and complexity of this information often makes it even more difficult to derive the systems-level knowledge we need. Combustion researchers have responded by forming interdisciplinary communities intent on sharing information and coordinating research priorities. Such efforts face many barriers, however, including lack of data accessibility and interoperability, missing metadata and pedigree information, efficient approaches for sharing data and analysis tools, and the challenges of working together across geography, disciplines, and a very diverse spectrum of applications and funding. This challenge is especially difficult for those developing, sharing and/or using detailed chemical models of combustion to treat the oxidation of practical fuels. This is a very complex problem, and the development of new chemistry models requires a series of steps that involve acquiring and keeping track of a large amount of data and its pedigree. Also, this data is developed using a diverse range of codes and experiments spanning ab initio chemistry codes, laboratory kinetics and flame experiments, all the way to reacting flow simulations on massively parallel computers. Each of these processes typically requires different data formats, and often the data and/or analysis codes are only accessible by personally contacting the creator. Chemical models are usually shared in a legacy file format, such as Chemki

    Measurement of charm production at central rapidity in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV

    Get PDF
    The pTp_{\rm T}-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0^0, D+^+, and D+^{*+} in the rapidity range y<0.5|y|<0.5, and for transverse momentum 1<pT<121< p_{\rm T} <12 GeV/cc, were measured in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0^0 \rightarrow Kπ\pi, D+^+ \rightarrow Kππ\pi\pi, D+^{*+} \rightarrow D0π^0\pi, and their charge conjugates, and was performed on a Lint=1.1L_{\rm int} = 1.1 nb1^{-1} event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s=2.76\sqrt{s} = 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pTp_{\rm T}-differential production cross sections at s=2.76\sqrt{s} = 2.76 TeV and our previous measurements at s=7\sqrt{s} = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/307

    Geographical Variation and Factors Associated with Non-Small Cell Lung Cancer in Manitoba

    No full text
    Background. Screening decreases non-small cell lung cancer (NSCLC) deaths and is recommended by the Canadian Task Force on Preventive Health Care. We investigated risk factor prevalence and NSCLC incidence at a small region level to inform resource allocation for lung cancer screening. Methods. NSCLC diagnoses were obtained from the Canadian Cancer Registry, then geocoded to 283 small geographic areas (SGAs) in Manitoba. Sociodemographic characteristics of SGAs were obtained from the 2006 Canadian Census and Canadian Community Health Survey. Geographical variation was modelled using a Bayesian spatial Poisson model. Results. NSCLC incidence in SGAs ranged from 1 to 343 cases per 100,000 population per year. The highest incidence rates were in the Southeastern, Southwestern, and Central regions of Manitoba, while most of Northern Manitoba had lower rates. Poisson regression suggested areas with higher proportions of Aboriginal people and higher average income, and immigrants had lower NSCLC incidence whereas areas with higher proportions of smokers had higher incidence. Conclusion. On an SGA level, smoking rates remain the most significant factor driving NSCLC incidence. Socioeconomic status and proportions of immigrants or Aboriginal peoples independently impact NSCLC rates. We have identified SGAs in Manitoba to target in policy and infrastructure planning for lung cancer screening
    corecore