1,271 research outputs found

    Visible light-induced destabilization of endocytosed liposomes

    Get PDF
    AbstractThe potential biomedical utility of the photoinduced destabilization of liposomes depends in part on the use of green to near infrared light with its inherent therapeutic advantages. The polymerization of bilayers can be sensitized to green light by associating selected amphiphilic cyanine dyes, i.e. the cationic 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine (DiI), or the corresponding anionic disulfonated DiI (DiI-DS), with the lipid bilayer. The DiI sensitization of the polymerization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine/1,2-bis[10-(2′,4′-hexadienoyloxy)-decanoyl]-sn-glycero-3-phosphocholine liposomes caused liposome destabilization with release of encapsulated aqueous markers. In separate experiments, similar photosensitive liposomes were endocytosed by cultured HeLa cells. Exposure of the cells and liposomes to 550 nm light caused a net movement of the liposome-encapsulated 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) from low pH compartment(s) to higher pH compartment(s). This suggests that photolysis of DiI-labelled liposomes results in delivery of the contents of the endocytosed liposomes to the cytoplasm. The release of HPTS into the cytoplasm appears to require the photoactivated fusion of the labelled liposomes with the endosomal membrane. These studies aid in the design of visible light sensitive liposomes for the delivery of liposome-encapsulated reagents to the cytoplasm

    Asteroids Were Born Big

    Get PDF
    How big were the first planetesimals? We attempt to answer this question by conducting coagulation simulations in which the planetesimals grow by mutual collisions and form larger bodies and planetary embryos. The size frequency distribution (SFD) of the initial planetesimals is considered a free parameter in these simulations, and we search for the one that produces at the end objects with a SFD that is consistent with asteroid belt constraints. We find that, if the initial planetesimals were small (e.g. km-sized), the final SFD fails to fulfill these constraints. In particular, reproducing the bump observed at diameter D~100km in the current SFD of the asteroids requires that the minimal size of the initial planetesimals was also ~100km. This supports the idea that planetesimals formed big, namely that the size of solids in the proto-planetary disk ``jumped'' from sub-meter scale to multi-kilometer scale, without passing through intermediate values. Moreover, we find evidence that the initial planetesimals had to have sizes ranging from 100 to several 100km, probably even 1,000km, and that their SFD had to have a slope over this interval that was similar to the one characterizing the current asteroids in the same size-range. This result sets a new constraint on planetesimal formation models and opens new perspectives for the investigation of the collisional evolution in the asteroid and Kuiper belts as well as of the accretion of the cores of the giant planets.Comment: Icarus (2009) in pres

    Delivery of Dark Material to Vesta via Carbonaceous Chondritic Impacts

    Full text link
    NASA's Dawn spacecraft observations of asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 {\mu}m filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as dark spots (likely secondary impacts) nearby impact craters. This DM could be a relic of ancient volcanic activity or exogenic in origin. We report that the majority of the spectra of DM are similar to carbonaceous chondrite meteorites mixed with materials indigenous to Vesta. Using high-resolution seven color images we compared DM color properties (albedo, band depth) with laboratory measurements of possible analog materials. Band depth and albedo of DM are identical to those of carbonaceous chondrite xenolith-rich howardite Mt. Pratt (PRA) 04401. Laboratory mixtures of Murchison CM2 carbonaceous chondrite and basaltic eucrite Millbillillie also show band depth and albedo affinity to DM. Modeling of carbonaceous chondrite abundance in DM (1-6 vol%) is consistent with howardite meteorites. We find no evidence for large-scale volcanism (exposed dikes/pyroclastic falls) as the source of DM. Our modeling efforts using impact crater scaling laws and numerical models of ejecta reaccretion suggest the delivery and emplacement of this DM on Vesta during the formation of the ~400 km Veneneia basin by a low-velocity (<2 km/sec) carbonaceous impactor. This discovery is important because it strengthens the long-held idea that primitive bodies are the source of carbon and probably volatiles in the early Solar System.Comment: Icarus (Accepted) Pages: 58 Figures: 15 Tables:

    Si-compatible candidates for high-K dielectrics with the Pbnm perovskite structure

    Full text link
    We analyze both experimentally (where possible) and theoretically from first-principles the dielectric tensor components and crystal structure of five classes of Pbnm perovskites. All of these materials are believed to be stable on silicon and are therefore promising candidates for high-K dielectrics. We also analyze the structure of these materials with various simple models, decompose the lattice contribution to the dielectric tensor into force constant matrix eigenmode contributions, explore a peculiar correlation between structural and dielectric anisotropies in these compounds and give phonon frequencies and infrared activities of those modes that are infrared-active. We find that CaZrO_3, SrZrO_3, LaHoO_3, and LaYO_3 are among the most promising candidates for high-K dielectrics among the compounds we considered.Comment: 17 pages, 9 figures, 4 tables. Supplementary information: http://link.aps.org/supplemental/10.1103/PhysRevB.82.064101 or http://www.physics.rutgers.edu/~sinisa/highk/supp.pd

    Evidence for seasonal cycles in deep-sea fish abundances: A great migration in the deep SE Atlantic?

    Get PDF
    Animal migrations are of global ecological significance, providing mechanisms for the transport of nutrients and energy between distant locations. In much of the deep sea (>200 m water depth), the export of nutrients from the surface ocean provides a crucial but seasonally variable energy source to seafloor ecosystems. Seasonal faunal migrations have been hypothesized to occur on the deep seafloor as a result, but have not been documented. Here, we analyse a 7.5‐year record of photographic data from the Deep‐ocean Environmental Long‐term Observatory Systems seafloor observatories to determine whether there was evidence of seasonal (intra‐annual) migratory behaviours in a deep‐sea fish assemblage on the West African margin and, if so, identify potential cues for the behaviour. Our findings demonstrate a correlation between intra‐annual changes in demersal fish abundance at 1,400 m depth and satellite‐derived estimates of primary production off the coast of Angola. Highest fish abundances were observed in late November with a smaller peak in June, occurring approximately 4 months after corresponding peaks in primary production. Observed changes in fish abundance occurred too rapidly to be explained by recruitment or mortality, and must therefore have a behavioural driver. Given the recurrent patterns observed, and the established importance of bottom‐up trophic structuring in deep‐sea ecosystems, we hypothesize that a large fraction of the fish assemblage may conduct seasonal migrations in this region, and propose seasonal variability in surface ocean primary production as a plausible cause. Such trophic control could lead to changes in the abundance of fishes across the seafloor by affecting secondary production of prey species and/or carrion availability for example. In summary, we present the first evidence for seasonally recurring patterns in deep‐sea demersal fish abundances over a 7‐year period, and demonstrate a previously unobserved level of dynamism in the deep sea, potentially mirroring the great migrations so well characterized in terrestrial systems

    Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    Get PDF
    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations

    GA101 (obinutuzumab) monocLonal Antibody as Consolidation Therapy In CLL (GALACTIC) trial: study protocol for a phase II/III randomised controlled trial

    Get PDF
    Background: Chronic lymphocytic leukaemia (CLL) is the most common adult leukaemia. Achieving minimal residual disease (MRD) negativity in CLL is an independent predictor of survival even with a variety of different treatment approaches and regardless of the line of therapy. Methods/design: GA101 (obinutuzumab) monocLonal Antibody as Consolidation Therapy In CLL (GALACTIC) is a seamless phase II/III, multi-centre, randomised, controlled, open, parallel-group trial for patients with CLL who have recently responded to chemotherapy. Participants will be randomised to receive either obinutuzumab (GA-101) consolidation or no treatment (as is standard). The phase II trial will assess safety and short-term efficacy in order to advise on continuation to a phase III trial. The primary objective for phase III is to assess the effect of consolidation therapy on progression-free survival (PFS). One hundred eighty-eight participants are planned to be recruited from forty research centres in the United Kingdom. Discussion: There is evidence that achieving MRD eradication with alemtuzumab consolidation is associated with improvements in survival and time to progression. This trial will assess whether obinutuzumab is safe in a consolidation setting and effective at eradicating MRD and improving PFS. Trial registration: ISRCTN, 64035629. Registered on 12 January 2015. EudraCT, 2014-000880-42. Registered on 12 November 2014
    corecore