1,886 research outputs found

    Fracture mode control: a bio-inspired strategy to combat catastrophic damage

    Get PDF
    The excellent mechanical properties of natural biomaterials have attracted intense attention from researchers with focus on the strengthening and toughening mechanisms. Nevertheless, no material is unconquerable under sufficiently high load. If fracture is unavoidable, constraining the damage scope turns to be a practical way to preserve the integrity of the whole structure. Recent studies on biomaterials have revealed that many structural biomaterials tend to be fractured, under sufficiently high indentation load, through ring cracking which is more localized and hence less destructive compared to the radial one. Inspired by this observation, here we explore the factors affecting the fracture mode of structural biomaterials idealized as laminated materials. Our results suggest that fracture mode of laminated materials depends on the coating/substrate modulus mismatch and the indenter size. A map of fracture mode is developed, showing a critical modulus mismatch (CMM), below which ring cracking dominates irrespective of the indenter size. Many structural biomaterials in nature are found to have modulus mismatch close to the CMM. Our results not only shed light on the mechanics of inclination to ring cracking exhibited by structural biomaterials but are of great value to the design of laminated structures with better persistence of structural integrity.Research Grants Council (Hong Kong, China). Early Career Scheme (Grant 533312)Hong Kong Polytechnic University. Departmental General Research Funds (Internal Competitive Research Grants 4-ZZA8)Hong Kong Polytechnic University. Departmental General Research Funds (Internal Competitive Research Grants A-PM24)Hong Kong Polytechnic University. Departmental General Research Funds (Internal Competitive Research Grants G-UA20

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore