291 research outputs found

    Penalized Orthogonal Iteration for Sparse Estimation of Generalized Eigenvalue Problem

    Full text link
    We propose a new algorithm for sparse estimation of eigenvectors in generalized eigenvalue problems (GEP). The GEP arises in a number of modern data-analytic situations and statistical methods, including principal component analysis (PCA), multiclass linear discriminant analysis (LDA), canonical correlation analysis (CCA), sufficient dimension reduction (SDR) and invariant co-ordinate selection. We propose to modify the standard generalized orthogonal iteration with a sparsity-inducing penalty for the eigenvectors. To achieve this goal, we generalize the equation-solving step of orthogonal iteration to a penalized convex optimization problem. The resulting algorithm, called penalized orthogonal iteration, provides accurate estimation of the true eigenspace, when it is sparse. Also proposed is a computationally more efficient alternative, which works well for PCA and LDA problems. Numerical studies reveal that the proposed algorithms are competitive, and that our tuning procedure works well. We demonstrate applications of the proposed algorithm to obtain sparse estimates for PCA, multiclass LDA, CCA and SDR. Supplementary materials are available online

    Automated algorithm for breast tissue differentiation in optical coherence tomography

    Get PDF
    Abstract. An automated algorithm for differentiating breast tissue types based on optical coherence tomography ͑OCT͒ data is presented. Eight parameters are derived from the OCT reflectivity profiles and their means and covariance matrices are calculated for each tissue type from a training set ͑48 samples͒ selected based on histological examination. A quadratic discrimination score is then used to assess the samples from a validation set. The algorithm results for a set of 89 breast tissue samples were correlated with the histological findings, yielding specificity and sensitivity of 0.88. If further perfected to work in real time and yield even higher sensitivity and specificity, this algorithm would be a valuable tool for biopsy guidance and could significantly increase procedure reliability by reducing both the number of nondiagnostic aspirates and the number of false negatives

    Retina-simulating phantom for optical coherence tomography.

    Get PDF
    Optical coherence tomography (OCT) is a rapidly growing imaging modality, particularly in the field of ophthalmology. Accurate early diagnosis of diseases requires consistent and validated imaging performance. In contrast to more well-established medical imaging modalities, no standardized test methods currently exist for OCT quality assurance. We developed a retinal phantom which mimics the thickness and near-infrared optical properties of each anatomical retinal layer as well as the surface topography of the foveal pit. The fabrication process involves layer-by-layer spin coating of nanoparticle-embedded silicone films followed by laser micro-etching to modify the surface topography. The thickness of each layer and dimensions of the foveal pit are measured with high precision. The phantom is embedded into a commercially available, water-filled model eye to simulate ocular dispersion and emmetropic refraction, and for ease of use with clinical OCT systems. The phantom was imaged with research and clinical OCT systems to assess image quality and software accuracy. Our results indicate that this phantom may serve as a useful tool to evaluate and standardize OCT performance

    The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor

    Get PDF
    Diabetic retinopathy (DR) is a complication secondary to diabetes and is the number one cause of blindness among working age individuals worldwide. Despite recent therapeutic breakthroughs using pharmacotherapy, a cure for DR has yet to be realized. Several clinical trials have highlighted the vital role dyslipidemia plays in the progression of DR. Additionally, it has recently been shown that activation of Liver X receptor (LXRα/LXRβ) prevents DR in diabetic animal models. LXRs are nuclear receptors that play key roles in regulating cholesterol metabolism, fatty acid metabolism and inflammation. In this manuscript, we show insight into DR pathogenesis by demonstrating an innovative signaling axis that unifies key metabolic regulators, Sirtuin 1 and LXR, in modulating retinal cholesterol metabolism and inflammation in the diabetic retina. Expression of both regulators, Sirtuin 1 and LXR, are significantly decreased in diabetic human retinal samples and in a type 2 diabetic animal model. Additionally, activation of LXR restores reverse cholesterol transport, prevents inflammation, reduces pro-inflammatory macrophages activity and prevents the formation of diabetes-induced acellular capillaries. Taken together, the work presented in this manuscript highlights the important role lipid dysregulation plays in DR progression and offers a novel potential therapeutic target for the treatment of DR

    Tracking adaptive optics scanning laser ophthalmoscope

    Get PDF
    ABSTRACT Active image stabilization for an adaptive optics scanning laser ophthalmoscope (AOSLO) was developed and tested in human subjects. The tracking device, a high speed, closed-loop optical servo which uses retinal features as tracking target, is separate from AOSLO optical path. The tracking system and AOSLO beams are combined via a dichroic beam splitter in front of the eye. The primary tracking system galvanometer mirrors follow the motion of the eye. The AOSLO raster is stabilized by a secondary set of galvanometer mirrors in the AOSLO optical train which are "slaved" to the primary mirrors with fixed scaling factors to match the angular gains of the optical systems. The AO system (at 830 nm) uses a MEMS-based deformable mirror (Boston Micromachines Inc.) for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of <10 µm. However, such high tracking bandwidth, required for tracking saccades, results in finite tracking position noise which is evident in AOSLO images. By means of filtering algorithms, the AOSLO raster is made to follow the eye accurately with reduced tracking noise artifacts. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) live reference image captured with a line scanning laser ophthalmoscope (LSLO) typically operating from 900 to 940 nm. High-magnification (1-2 deg) AOSLO retinal scans easily positioned on the retina in a drag-and-drop manner. Normal adult human volunteers were tested to optimize the tracking instrumentation and to characterize AOSLO imaging performance. Automatic blink detection and tracking re-lock, enabling reacquisition without operator intervention, were also tested. The tracking-enhanced AOSLO may become a useful tool for eye research and for early detection and treatment of retinal diseases

    Medical optics and biotechnology; (170.4500) Optical coherence tomography; (170.3880) Medical and biological imaging

    Get PDF
    Abstract: We have developed a dual-beam Fourier domain optical Doppler tomography (FD-ODT) system to image zebrafish (Danio rerio) larvae. Two beams incident on the zebrafish with a fixed angular separation allow absolute blood flow velocity measurement to be made regardless of vessel orientation in a sagittal plane along which the heart and most of the major vasculature lie. Two spectrometers simultaneously acquire spectra from two interferometers with a typical (maximum) line rate of 18 (28) kHz. The system was calibrated using diluted milk and microspheres and a 0.5-mm thick flow cell. The average deviation from the set velocity from 1.4 to 34.6 mm/s was 4.1%. Three-dimensional structural raster videos were acquired of an entire fish, and through the head, heart, and upper tail of the fish. Coarse features that were resolved include the telencephalon, retina, both heart chambers (atrium and ventricle), branchial arches, and notochord. Other fine structures within these organs were also resolved. Zebrafish are an important tool for high-throughput screening of new pharmacological agents. The ability to generate high-resolution three-dimensional structural videos and accurately measure absolute flow rates in major vessels with FD-ODT provides researchers with additional metrics by which the efficacy of new drugs can be assessed

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV

    Get PDF
    Results are presented from a search for physics beyond the standard model based on events with large missing transverse energy, at least three jets, and at least one, two, or three b-quark jets. The study is performed using a sample of proton-proton collision data collected at sqrt(s) = 7 TeV with the CMS detector at the LHC in 2011. The integrated luminosity of the sample is 4.98 inverse femtobarns. The observed number of events is found to be consistent with the standard model expectation, which is evaluated using control samples in the data. The results are used to constrain cross sections for the production of supersymmetric particles decaying to b-quark-enriched final states in the context of simplified model spectra.Comment: Submitted to Physical Review

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented
    corecore