11 research outputs found

    Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array

    Get PDF
    The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy -ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation, as well as shower detection at large impact distance, and hence large field of view (FoV), and efficient image capture in the presence of large time gradients in the shower image detected by the camera. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 6 mm pixels, leading to a low-cost (150 k€), compact (0.5 m 0.5 m), and light (45 kg) camera with 2048 pixels providing a camera FoV of 9 degrees. The CHEC electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the -ray energy range of 1–300 TeV, and at impact distances up to 500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to 900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory.J. Zorn ... A. Malouf ... G. Rowell ... et al

    Assessment of the GCT Prototypes Optical System Implementation and Other Key Performances for the Cherenkov Telescope Array

    No full text
    International audienceThe Cherenkov Telescope Array (CTA) project, led by an international collaborationof institutes, aims to create the world's largest next generation observatory for Very HighEnergy (VHE) gamma-ray astronomy. It will be devoted to observations in a wide band ofenergy, from a few tens of GeV to a few hundreds of TeV with Large, Medium and Small-sizedtelescopes.The Small-Size Telescopes (SSTs) are dedicated to the highest energy range above afew TeV and up to 300 TeV. GCT is an imaging atmospheric Cherenkov telescope (IACT)proposed for the subarray of about 70 SSTs to be installed on the Southern site of CTA inChile. The Observatory of Paris and the National Institute for Earth Sciences and Astronomy(INSU/CNRS) have developed the mechanical structure, mirrors (aspherical lightweightaluminium segments) and control system of the GCT. The GCT is based on a Schwarzschild-Couder (S-C) dual-mirror optical design which has the advantages, compared to the currentIACTs, to offer a wide field of view (~ 9°) while decreasing the cost and volume (~ 9 m x 4 mx 6 m for ~ 11 tons) of the telescope structure, as well as the camera. The prototype (pGCT)has been installed at the Meudon's site of the Observatory of Paris and was the first S-Ctelescope and the first CTA prototype to record VHE events on-sky in November 2015.After three years of intensive testing, pGCT has now been commissioned. This paperis a status report on the complete GCT telescope optical system and the performance it canprovide for CTA

    Performance of the Gamma-ray Cherenkov Telescope structure: a dual-mirror telescope prototype proposed for the future Cherenkov Telescope Array

    No full text
    International audienceThe Cherenkov Telescope Array (CTA) project aims to create the next generation Very High-Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays from 20 GeV to above 100 TeV. Because of this wide energy band, three classes of telescopes, associated with different energy ranges and different mirror sizes, are defined. The Small Size Telescopes (SSTs) are associated with the highest energy range. Seventy of these telescopes are foreseen on the Southern site of the CTA. The large number of telescopes constrains their mechanical structure because easy maintenance and reduced cost per telescope are needed. Moreover, of course, the design shall fulfill the required performance and lifetime in the environment conditions of the site. The Observatoire de Paris started design studies in 2011 of the mechanical structure of the GCT (Gamma-ray Cherenkov Telescope), a four-meter prototype telescope for the SSTs of CTA, from optical and preliminary mechanical designs made by the University of Durham. At the end of 2014 these studies finally resulted in a lightweight ( 8 tons) and stiff design. This structure was based on the dual-mirror Schwarzschild-Couder (SC) optical design, which is an interesting and innovative alternative to the one-mirror Davies-Cotton design commonly used in ground-based Cherenkov astronomy. The benefits of such a design are many since it enables a compact structure, lightweight camera and a good angular resolution across the entire field-of-view. The mechanical structure was assembled on the Meudon site of the Observatoire de Paris in spring 2015. The secondary mirror, panels of the primary mirror and the Telescope Control System were successfully implemented afterwards leading now to a fully operational telescope. This paper focuses on the mechanics of the telescope prototype. It describes the mechanical structure and presents its performance identified from computations or direct measurements. Upgrades of the design in the context of the preproduction and the large scale CTA production are also discussed

    Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array

    No full text
    The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy Îł-ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation, as well as shower detection at large impact distance, and hence large field of view (FoV), and efficient image capture in the presence of large time gradients in the shower image detected by the camera. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 × 6 mm2pixels, leading to a low-cost (∌150 k€), compact (0.5 m × 0.5 m), and light (∌45 kg) camera with 2048 pixels providing a camera FoV of ∌9 degrees. The CHEC electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the Îł-ray energy range of 1–300 TeV, and at impact distances up to ∌500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to ∌900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory

    Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array

    Get PDF
    The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy -ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation, as well as shower detection at large impact distance, and hence large field of view (FoV), and efficient image capture in the presence of large time gradients in the shower image detected by the camera. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 6 mm pixels, leading to a low-cost (150 k€), compact (0.5 m 0.5 m), and light (45 kg) camera with 2048 pixels providing a camera FoV of 9 degrees. The CHEC electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the -ray energy range of 1–300 TeV, and at impact distances up to 500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to 900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory

    Final characterisation and design of the Gamma-ray Cherenkov Telescope (GCT) for the Cherenkov Telescope Array

    Get PDF
    The Gamma-ray Cherenkov Telescope (GCT) is one of the telescopes proposed for the Small Sized Telescope (SST) section of CTA. Based on a dual-mirror Schwarzschild-Couder design, which allows for more compact telescopes and cameras than the usual single-mirror designs, it will be equipped with a Compact High-Energy Camera (CHEC) based on silicon photomultipliers (SiPM). In 2015, the GCT prototype was the first dual-mirror telescope constructed in the prospect of CTA to record Cherenkov light on the night sky. Further tests and observations have been performed since then. This report describes the current status of the GCT, the results of tests performed to demonstrate its compliance with CTA requirements, and the optimisation of the design for mass production. The GCT collaboration, including teams from Australia, France, Germany, Japan, the Netherlands and the United Kingdom, plans to install the first telescopes on site in Chile for 2019-2020 as part of the CTA pre-production phase

    Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout

    No full text
    The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions

    Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout

    Get PDF
    International audienceThe Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions

    Cherenkov Telescope Array Contributions to the 35th International Cosmic Ray Conference (ICRC2017)

    Full text link
    List of contributions from the Cherenkov Telescope Array Consortium presented at the 35th International Cosmic Ray Conference, July 12-20 2017, Busan, Korea.Comment: Index of Cherenkov Telescope Array conference proceedings at the ICRC2017, Busan, Kore
    corecore