77 research outputs found

    Hepatoblast and mesenchymal cell-specific gene-expression in fetal rat liver and in cultured fetal rat liver cells

    Get PDF
    The aim of this study was to determine whether passaged rat fetal liver cells are functional hepatoblasts. Hepatocyte/hepatoblast- and liver myofibroblast-gene-expressions were studied in adult and fetal rat liver tissues as well as in primary and passaged cultures of isolated rat fetal liver cells at both the mRNA and protein level. Desmin- and Alpha-Smooth Muscle Actin (SMA)-positive cells were located in the walls of liver vessels, whereas Desmin-positive/SMA-negative cells were distributed within the liver parenchyma. Primary cultures contained Prox1-positive hepatoblasts, Desmin/SMA-positive myofibroblasts and only a few Desmin-positive/SMA-negative cells. Albumin and alpha-fetoprotein (AFP) could be detected in the primary cultures and to a lesser extent after the first passage. The number of Desmin-positive/SMA-negative cells decreased with successive passage, such that after the second passage, only Desmin/SMA-positive cells could be detected. SMA-gene-expression increased during the passages, suggesting that myofibroblasts become the major cell population of fetal liver cell cultures over time. This observation needs to be taken into account, should passaged fetal liver cells be used for liver cell transplantation. Moreover it contradicts the concept of epithelial-mesenchymal transformation and suggests rather that selective overgrowth of mesenchymal cells occurs in culture

    Triplet lifetime in gaseous argon

    Get PDF
    MiniCLEAN is a single-phase liquid argon dark matter experiment. During the initial cooling phase, impurities within the cold gas (<<140 K) were monitored by measuring the scintillation light triplet lifetime, and ultimately a triplet lifetime of 3.480 ±\pm 0.001 (stat.) ±\pm 0.064 (sys.) μ\mus was obtained, indicating ultra-pure argon. This is the longest argon triplet time constant ever reported. The effect of quenching of separate components of the scintillation light is also investigated

    In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group

    Get PDF
    The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD

    Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium

    Get PDF
    BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia

    Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium

    Get PDF
    Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, using MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets in the ENIGMA consortium, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macro-structural asymmetry may reflect differences at the molecular, cytoarchitectonic or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    HLA in isolated REM sleep behavior disorder and Lewy body dementia

    Get PDF
    peer reviewedSynucleinopathies-related disorders such as Lewy body dementia (LBD) and isolated/idiopathic REM sleep behavior disorder (iRBD) have been associated with neuroinflammation. In this study, we examined whether the human leukocyte antigen (HLA) locus plays a role in iRBD and LBD. In iRBD, HLA-DRB1*11:01 was the only allele passing FDR correction (OR = 1.57, 95 CI = 1.27–1.93, p = 2.70e-05). We also discovered associations between iRBD and HLA-DRB1 70D (OR = 1.26, 95\%CI = 1.12–1.41, p = 8.76e-05), 70Q (OR = 0.81, 95\%CI = 0.72–0.91, p = 3.65e-04) and 71R (OR = 1.21, 95\%CI = 1.08–1.35, p = 1.35e-03). Position 71 (pomnibus = 0.00102) and 70 (pomnibus = 0.00125) were associated with iRBD. Our results suggest that the HLA locus may have different roles across synucleinopathies

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects
    corecore