94 research outputs found
The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock.
SummaryIn mammals, the master clock of the suprachiasmatic nuclei (SCN) and subordinate clocks found throughout the body coordinate circadian rhythms of behavior and physiology. We characterize the clock of the adrenal, an important endocrine gland that synchronizes physiological and metabolic rhythms. Clock gene expression was detected in the outer adrenal cortex prefiguring a role of the clock in regulating gluco- and mineral corticoid biogenesis. In Per2/Cry1 double mutant mice, which lack a circadian clock, hypothalamus/pituitary/adrenal axis regulation was defective. Organ culture and tissue transplantation suggest that the adrenal pacemaker gates glucocorticoid production in response to adrenocorticotropin (ACTH). In vivo the adrenal circadian clock can be entrained by light. Transcriptome profiling identified rhythmically expressed genes located at diverse nodes of steroid biogenesis that may mediate gating of the ACTH response by the adrenal clock
The disruption of GDP-fucose de novo biosynthesis suggests the presence of a novel fucose-containing glycoconjugate in <i>Plasmodium</i> asexual blood stages
Glycosylation is an important posttranslational protein
modification in all eukaryotes. Besides
glycosylphosphatidylinositol (GPI) anchors and N-glycosylation,
O-fucosylation has been recently reported in key sporozoite
proteins of the malaria parasite. Previous analyses showed the
presence of GDP-fucose (GDP-Fuc), the precursor for all
fucosylation reactions, in the blood stages of Plasmodium
falciparum. The GDP-Fuc de novo pathway, which requires the
action of GDP-mannose 4,6-dehydratase (GMD) and GDP-L-fucose
synthase (FS), is conserved in the parasite genome, but the
importance of fucose metabolism for the parasite is unknown. To
functionally characterize the pathway we generated a PfGMD
mutant and analyzed its phenotype. Although the labelling by the
fucose-binding Ulex europaeus agglutinin I (UEA-I) was
completely abrogated, GDP-Fuc was still detected in the mutant.
This unexpected result suggests the presence of an alternative
mechanism for maintaining GDP-Fuc in the parasite. Furthermore,
PfGMD null mutant exhibited normal growth and invasion rates,
revealing that the GDP-Fuc de novo metabolic pathway is not
essential for the development in culture of the malaria parasite
during the asexual blood stages. Nonetheless, the function of
this metabolic route and the GDP-Fuc pool that is generated
during this stage may be important for gametocytogenesis and
sporogonic development in the mosquito
Lysyl-tRNA synthetase, a target for urgently needed M. tuberculosis drugs
Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described. The series has been developed against M. tuberculosis lysyl-tRNA synthetase (LysRS) and cellular studies support this mechanism of action. DDD02049209, the lead compound, is efficacious in mouse models of acute and chronic tuberculosis and has suitable physicochemical, pharmacokinetic properties and an in vitro safety profile that supports further development. Importantly, preliminary analysis using clinical resistant strains shows no pre-existing clinical resistance towards this scaffold
Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy
Sustained glucose and glutamine transport are essential for activated T lymphocytes to support ATP and macromolecule biosynthesis. We now show that glutamine and glucose also fuel an indispensible dynamic regulation of intracellular protein O-GlcNAcylation at key stages of T cell development, transformation and differentiation. Glucose and glutamine are precursors of UDP-GlcNAc, a substrate for cellular glycosyltransferases. Immune activated T cells contained higher concentrations of UDP-GlcNAc and increased intracellular protein O-GlcNAcylation controlled by the enzyme O-GlcNAc glycosyltransferase as compared to naïve cells. We identified Notch, the T cell antigen receptor and c-Myc as key controllers of T cell protein O-GlcNAcylation, via regulation of glucose and glutamine transport. Loss of O-GlcNAc transferase blocked T cell progenitor renewal, malignant transformation, and peripheral T cell clonal expansion. Nutrient-dependent signaling pathways regulated by O-GlcNAc glycosyltransferase are thus fundamental for T cell biology
A reporting format for leaf-level gas exchange data and metadata
Leaf-level gas exchange data support the mechanistic understanding of plant fluxes of carbon and water. These fluxes inform our understanding of ecosystem function, are an important constraint on parameterization of terrestrial biosphere models, are necessary to understand the response of plants to global environmental change, and are integral to efforts to improve crop production. Collection of these data using gas analyzers can be both technically challenging and time consuming, and individual studies generally focus on a small range of species, restricted time periods, or limited geographic regions. The high value of these data is exemplified by the many publications that reuse and synthesize gas exchange data, however the lack of metadata and data reporting conventions make full and efficient use of these data difficult. Here we propose a reporting format for leaf-level gas exchange data and metadata to provide guidance to data contributors on how to store data in repositories to maximize their discoverability, facilitate their efficient reuse, and add value to individual datasets. For data users, the reporting format will better allow data repositories to optimize data search and extraction, and more readily integrate similar data into harmonized synthesis products. The reporting format specifies data table variable naming and unit conventions, as well as metadata characterizing experimental conditions and protocols. For common data types that were the focus of this initial version of the reporting format, i.e., survey measurements, dark respiration, carbon dioxide and light response curves, and parameters derived from those measurements, we took a further step of defining required additional data and metadata that would maximize the potential reuse of those data types. To aid data contributors and the development of data ingest tools by data repositories we provided a translation table comparing the outputs of common gas exchange instruments. Extensive consultation with data collectors, data users, instrument manufacturers, and data scientists was undertaken in order to ensure that the reporting format met community needs. The reporting format presented here is intended to form a foundation for future development that will incorporate additional data types and variables as gas exchange systems and measurement approaches advance in the future. The reporting format is published in the U.S. Department of Energy's ESS-DIVE data repository, with documentation and future development efforts being maintained in a version control system
Approachability in Stackelberg Stochastic Games with Vector Costs
The notion of approachability was introduced by Blackwell [1] in the context
of vector-valued repeated games. The famous Blackwell's approachability theorem
prescribes a strategy for approachability, i.e., for `steering' the average
cost of a given agent towards a given target set, irrespective of the
strategies of the other agents. In this paper, motivated by the multi-objective
optimization/decision making problems in dynamically changing environments, we
address the approachability problem in Stackelberg stochastic games with vector
valued cost functions. We make two main contributions. Firstly, we give a
simple and computationally tractable strategy for approachability for
Stackelberg stochastic games along the lines of Blackwell's. Secondly, we give
a reinforcement learning algorithm for learning the approachable strategy when
the transition kernel is unknown. We also recover as a by-product Blackwell's
necessary and sufficient condition for approachability for convex sets in this
set up and thus a complete characterization. We also give sufficient conditions
for non-convex sets.Comment: 18 Pages, Submitted to Dynamic Games and Application
Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis
Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage; Plasmodium falciparum; and; Cryptosporidium parvum; in cell-culture studies. Target deconvolution in; P. falciparum; has shown that cladosporin inhibits lysyl-tRNA synthetase (; Pf; KRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both; Pf; KRS1 and; C. parvum; KRS (; Cp; KRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED; 90; = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between; Pf; KRS1 and; Cp; KRS. This series of compounds inhibit; Cp; KRS and; C. parvum; and; Cryptosporidium hominis; in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for; Pf; KRS1 and; Cp; KRS vs. (human); Hs; KRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis
- …