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Abstract 

Glycoconjugates are important mediators of host-pathogen interactions and are usually very abundant in the surface 
of many protozoan parasites. However, in the particular case of Plasmodium species, previous works show that gly-
cosylphosphatidylinositol anchor modifications, and to an unknown extent, a severely truncated N-glycosylation are 
the only glycosylation processes taking place in the parasite. Nevertheless, a detailed analysis of the parasite genome 
and the recent identification of the sugar nucleotide precursors biosynthesized by Plasmodium falciparum support a 
picture in which several overlooked, albeit not very prominent glycosylations may be occurring during the parasite 
life cycle. In this work, the authors review recent developments in the characterization of the biosynthesis of glyco-
sylation precursors in the parasite, focusing on the outline of the possible fates of these precursors.
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Background
The cell surfaces and endosomal/lysosomal systems of 
protozoan parasites are usually rich in glycoconjugates, 
some of which play essential roles in their survival, infec-
tivity or virulence [1]. In Plasmodium falciparum, the 
only glycan structures described so far are limited to 
glycosylphosphatidylinositol (GPI) anchors [2–5] and, 
recently, to unusual N-glycans composed of one or two 
GlcNAc residues [6, 7]. The glycan structures of P. falci-
parum GPI anchors are well characterized [3]. However, 
controversial questions regarding the glycobiology of P. 
falciparum, such as the presence of O-glycosylation or 
the extent and significance of N-glycosylation, remain 
open [8, 9].

In the blood stages, P. falciparum primarily relies upon 
glycolysis for its energetic requirements [10]. Due to the 
need of a large amount of glucose, P. falciparum increases 
the hexose permeability of the red blood cell (RBC) mem-
brane by expressing an essential hexose transporter at 
the surface of the infected RBC [11, 12]. The presence of 

active sugar nucleotide biosynthetic routes in the parasite 
indicates that there is a flux of glucose for the synthesis 
of these various glycosylation precursors [13–16]. Sugar 
nucleotides can be synthetized, in general, through two 
main pathways: a de novo pathway, which involves inter-
conversion of an existing sugar or sugar nucleotide, and 
a salvage pathway, which relies upon “activation” of the 
sugar by a kinase and a subsequent pyrophosphorylase 
to form a sugar nucleotide [15]. Thus, despite that evolu-
tion into a parasitic niche seems to have resulted in “par-
ing down” of many Plasmodium metabolic pathways, the 
presence of sugar nucleotides suggests an involvement 
in the biosynthesis of different parasite glycans [10]. The 
biosynthesis of GDP-fucose and other sugar nucleotides 
not related to GPI anchors strongly suggests a role in the 
biosynthesis of glycans/glycolipids that are not yet char-
acterized in the parasite [6, 8, 17–19].

GDP‑mannose
GDP-mannose (GDP-Man), the activated form of man-
nose, is biosynthesized in a multistep process from 
mannose salvaging or via a de novo pathway from fruc-
tose-6-phosphate (Fru6P). Metabolic databases, based 
on the parasite genome sequence, predict the conserva-
tion of both biosynthetic routes (Fig.  1) [13]. In the de 
novo pathway a mannose-1-phosphate isomerase (MPI; 
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EC 5.3.1.8) catalyzes the interconversion of Fru6P to 
mannose-6-phosphate (Man6P). Two more enzymes 
catalyze the conversion of Man6P into GDP-Man, firstly 
phosphomannomutase (PMM; EC 5.4.2.8) forms man-
nose-1-phosphate (Man1P), which is then converted 
into GDP-Man by a Man1P guanyltransferase (MPG; EC 
2.7.7.13). The salvage pathway comprises the phospho-
rylation of mannose into Man6P by a hexokinase (HK; 
EC 2.7.1.1), after which the pathway follows the same 
route as the de novo pathway (see Table 1) [13, 15]. The 
presence of a mannose salvage pathway has been demon-
strated through the incorporation of [3H]Man into GPI 
anchors by the blood stages of the parasite [2, 15, 20].

In eukaryotes, Man is an important constituent of N-, 
O-linked glycans and glycosylphosphatidylinositol (GPI) 
anchors. However, Man residues are absent in P. falci-
parum N-glycans, as the parasite synthesizes a severely 
truncated N-glycan precursor composed of one or two 
GlcNAc residues (Fig. 2) [2, 6, 7]. Nonetheless, Man resi-
dues are present in the P. falciparum major glycoconju-
gates, the GPI anchors that play an important role in the 
pathogenicity of the parasite. GPIs are attached to the 
C-terminus of many important surface proteins, such 
as MSP-1, and anchor them to the external leaflet of the 
plasma membrane. Besides, in the surface of the parasite 
there are also protein-free GPIs that function as malar-
ial toxins and are involved in parasite-induced release of 

cytokines such as tumor necrosis factor (TNF) and inter-
leukin 1 (IL-1) [3, 9, 21–24].

Plasmodium falciparum GPIs consist of the conserved 
glycan core (Manα1-2Manα1-6Manα1-4GlcNH2α1-6myo-
Ins) but have an extra/forth mannose and inositol-acylation. 
Thus, the complete P. falciparum GPI structure is defined 
as EtNP-6(Manα1-2)Manα1-2Manα1-6Manα1-4GlcNα1-
6(acyl-2)myo-Ins-1-P-(sn1,2 diacyl)-glycerol (Figs. 2, 3) [2, 3, 
20, 25]. The protein free GPI glycan core contains either 3 
or 4 mannose residues since two structurally distinct GPI-
anchor precursors (Pfα and Pfβ) are used by the parasite. Pfα 
presents an additional α1,2-mannose residue modifying the 
terminal mannose of the conserved trimannosyl core glycan 
[2, 3, 20, 21]. The biosynthesis of P. falciparum GPI anchors 
as with all other eukaryotes, starts with the preassembly of a 
GPI precursor in the cytoplasmic face of the ER membrane. 
Briefly, the addition of GlcNAc to phosphatidylinositol (PI) 
by phosphatidylinositol glycosyltransferase-A (PIG-A) gives 
rise to GlcNAc-PI (Fig.  2), which is then de-N-acetylated 
to form GlcN-PI by a de-N-acetylase (PIG-L)(steps are 
discussed in detail below). Prior to mannosylation at the 4 
position of the GlcN, an inositol acyltransferase (PIG-W) 
transfers a fatty acid (usually myristate or palmitate) from 
acyl-CoA to the 2-OH group of the D-myo-inositol resi-
due of GlcN-PI (Fig.  2). Subsequently, the GPI precursor 
is translocated from the cytoplasmic to the luminal face of 
the ER, where four Man residues are added sequentially by 
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Fig. 1 Sugar nucleotide biosynthesis pathways in Plasmodium falciparum. Activated sugars, used for glycoconjugate biosynthesis, are underlined. 
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Table 1 Enzymes involved in sugar nucleotide pathways, GPI‑anchor and C‑, N‑ and O‑glycan biosynthesis of P. falcipa-
rum

a All the gene ID numbers are identified and annotated in P. falciparum genome as putative candidates. The genes in italics (GMD and FS) are the only ones that have 
been functionally characterized [12]
b Syntenic orthologs identified in other Plasmodium species. Pv (P. vivax), Pk (P. knowlesii), Pc (P. cynomolgy), Pr (P. reichenowi), Pb (P. berghei), Py (P. yoelii) and Pch (P. 
chabaudi) [22]

Step Enzyme name Enzyme number P. falciparum homologuesa Syntenic orthologsb

1 Hexokinase (HK) EC 2.7.1.1 PF3D7_0624000 Pv, Pk, Pc, Pr, Pb, Py, Pch

2 Glucose-6-phosphate isomerase (G6PI) EC 5.3.1.9 PF3D7_1436000 Pv, Pk, Pc, Pr, Pb, Py, Pch

3 Glucosamine-fructose-6-phosphate ami-
notransferase (GFPT)

EC 2.6.1.16 PF3D7_1025100 Pv, Pk, Pc, Pr, Pb, Py, Pch

4 Glucosamine-phosphate N- acetyltransferase 
(GNA)

EC 2.3.1.4 No gene identified

5 Phosphoacetylglucosamine mutase (PAGM) EC 5.4.2.3 PF3D7_1130000 Pv, Pk, Pc, Pr, Pb, Py, Pch

6 UDP-N-acetylglucosamine pyrophosphory-
lase (UAP)

EC 2.7.7.23 PF3D7_1343600 Pv, Pk, Pc, Pr, Pb, Py, Pch

7 Mannose-6-phosphate isomerase (MPI) EC 5.3.1.8 PF3D7_0801800 Pv, Pk, Pc, Pr, Pb, Py, Pch

8 Phosphomannomutase (PMM) EC 5.4.2.8 PF3D7_1017400 Pv, Pk, Pc, Pr, Pb, Py, Pch

9 Mannose-1-phosphate guanyltransferase 
(MPG)

EC 2.7.7.13 PF3D7_1420900 Pv, Pk, Pc, Pr, Pb, Py, Pch

10 GDP-mannose 4,6-dehydratase (GMD) EC 4.2.1.47 PF3D7_0813800 Pv, Pk, Pc, Pr, Pb, Py, Pch

11 GDP-L-fucose synthase (FS) EC 1.1.1.271 PF3D7_1014000 Pv, Pk, Pc, Pr, Pb, Py, Pch

12 Phosphoglucomutase (PGM) EC 5.4.2.2 PF3D7_1012500 Pv, Pk, Pc, Pr, Pb, Py, Pch

13 UTP-glucose-1-phosphate uridylyltransferase 
(UGP) or UDP-sugar pyrophosphorylase  
(USP)

EC 2.7.7.9 or  
EC 2.7.7.64

PF3D7_0517500 Pv, Pk, Pc, Pr, Pb, Py, Pch

14 Galactokinase (GK) EC 2.7.1.6 No gene identified

15 UDP-glucose 4-epimerase (GALE) EC 5.1.3.2 No gene identified

16 Dolichol-phosphate mannosyltransferase 
polypeptide 1 (DPM1)

EC 2.4.1.83 PF3D7_1141600 Pv, Pk, Pc, Pr, Pb, Py, Pch

Enzymes involved in GPI-Anchor biosynthesis

17  phosphatidylinositol n- acetylglucosaminyl-
transferase (PIG-A)

EC 2.4.1.198 PF3D7_0618900.1 and PF3D7_0935300 and/ 
or PF3D7_1032400 and/or PF3D7_1141400

Pv, Pk, Pc, Pr, Pb, Py, Pch

18  N-acetylglucosaminyl phosphatidylinositol 
deacetylase (PIG-L)

EC 3.5.1.89 PF3D7_0624700 and/or PF3D7_0911000 Pv, Pk, Pc, Pr, Pb, Py, Pch

19  Inositol acyltransferase (PIG-W) EC 2.3 PF3D7_0615300 Pv, Pk, Pc, Pr, Pb, Py, Pch

20  GPI mannosyltransferase I (PIG-M) EC 2.4.1 PF3D7_1210900 Pv, Pk, Pc, Pr, Pb, Py, Pch

21  GPI mannosyltransferase II (PIG-V) EC 2.4.1 PF3D7_1247300 Pv, Pk, Pc, Pr, Pb, Py, Pch

22  GPI mannosyltransferase III (PIG-B) EC 2.4.1 PF3D7_1341600 Pv, Pk, Pc, Pr, Pb, Py, Pch

23  GPI mannosyltransferase IV EC 2.4.1 No gene identified

Enzymes involved in N-glycans biosynthesis

24  UDP-N-Acetyl-glucosamine-1-P transferase 
(ALG7)

EC 2.7.8.15 PF3D7_0321200 Pv, Pk, Pc, Pr, Pb, Py, Pch

25  UDP-N-Acetylglucosaminyltransferase  
subunit (ALG13)

EC 2.4.1.141 PF3D7_0806400 Pv, Pk, Pc, Pr, Pb, Py, Pch

26  UDP-N-Acetylglucosaminyltransferase  
subunit (ALG14)

EC 2.4.1.141 PF3D7_0211600 Pv, Pk, Pr, Pb, Py, Pch

27  Catalytic subunit of the oligosaccharyltrans-
ferase complex (STT3)

EC 2.4.99.18 PF3D7_1116600 Pv, Pk, Pc, Pr, Pb, Py, Pch

Enzymes involved in O-fucosylation

28  GDP-fucose protein O-fucosyltransferase 2 
(PoFUT2)

EC 2.4.1.221 PF3D7_0909200 Pv, Pk, Pc, Pr, Pb, Py, Pch

Enzymes involved in C-mannosylation

29  C-mannosyltransferase EC 2.4.1 PF3D7_0806200 Pv, Pk, Pc, Pr, Pb, Py, Pch
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four different GPI-mannosyltransferases (Fig. 2). The Man 
donor for these mannosyltransferases is dolichol-phos-
phate-mannose (Dol-P-Man) formed by the action of doli-
chol-phosphate mannose polypeptide 1 (known as DPM1) 
alternatively known as Dol-P-Man synthase (DPMS). Inter-
estingly, P. falciparum DPMS represents a unique class in 
the clade of DPMS enzymes [26] that has been genetically 
validated as essential (Williams and Smith, manuscript in 
preparation). Dol-P-Man is formed through the coupling 
of Man from GDP-Man to Dol-P to form Dol-P-Man and 
GDP as by-product. Three of the four mannosyltransferases 
required for GPI-biosynthesis, PIG-M, PIG-V and PIG-B 
encoding putative Man1, Man2 and Man3 transferases 
respectively, can be identified in the parasite genome [13, 
27, 28]. However, no clear candidate genes for addition of 
Man4 (also performed in yeast by the Smp3 gene) are found 
[27]. Interestingly, a recent study suggests that P. falciparum 
PIG-B is responsible of adding the extra Man to the GPI 
precursor [29].

Several essential proteins present in the surface of vari-
ous stages of the malaria life cycle, such as Pfs48/45 on 
gametes, Pfs25 on ookinetes, circumsporozoite (CS) on 
sporozoites and MSP-1 or MSP-2 on merozoites, are 
GPI-anchored proteins [30]. Therefore, GPI anchors 
play important roles in P. falciparum survival and path-
ogenicity. The essentiality of GPI-anchored proteins 
is supported by genetic studies. For instance, Pfs48/45 
gene disruption prevents zygote development and trans-
mission whereas mutant parasites lacking CS protein 
do not form sporozoites [31, 32]. In the blood stages, it 
was demonstrated that six proteins out of seven mero-
zoite GPI-anchored proteins were refractory to genetic 

deletion, strongly suggesting an essential role in parasite 
survival [33].

Another possible fate for GDP-Man/Dol-P-Man is the 
C-mannosylation of proteins [34]. C-mannosylation is 
the attachment of a Man residue to tryptophan through a 
carbon–carbon bond. This type of glycosylation is found 
in WXXW sequences of secreted proteins and cell sur-
face receptors containing thrombospondin type I repeat 
(TSR) domains [35]. Whereas TSR has been recognized 
as critical for protein adhesion and recognition in sev-
eral organisms including Plasmodium [36, 37], the direct 
influence of C-mannosylation on protein function is not 
known. The enzyme responsible for C-mannosylation is 
a C-mannosyltransferase, which was first identified as 
DPY-19 in Caenorhabditis elegans [38]. In P. falciparum 
genome there is a DPY-19 homolog, which is present in 
all sequenced Plasmodium spp. genomes. Further inves-
tigations are required to confirm the presence/activity of 
this putative C-mannosyltransferase and the biological 
significance of this post-translational modification in P. 
falciparum.

GDP‑fucose
Fucosylation is important in a wide variety of organisms, 
as it is associated with numerous types of recognition 
and adhesion events. GDP-fucose (GDP-Fuc), the precur-
sor for all the fucosylation reactions, has been identified 
in the blood stages of P. falciparum at levels similar to the 
pools present in other protozoan parasites [15, 39]. The P. 
falciparum genome contains homologues of the enzymes 
involved in the de novo biosynthesis of GDP-Fuc from 
GDP-Man (Fig.  1 and Table  1) [13]. This pathway relies 
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in a three-step conversion of GDP-Man to GDP-Fuc cata-
lyzed by two enzymes: a GDP-Man dehydratase (GMD; 
EC 4.2.1.47) and a GDP-Fuc synthetase (FS; EC 1.1.1.271) 
also known as GDP-4-dehydro-6-deoxy-d-mannose 
epimerase/reductase. PfGMD and PfFS are expressed 
throughout the intraerythrocytic life cycle and have been 
shown to be active in in vitro studies [15]. In some organ-
isms a salvage pathway for the biosynthesis of GDP-Fuc 
is also present. This pathway involves the phosphoryla-
tion of fucose by a fucose kinase (EC 2.7.1.52) followed 
by condensation with GTP catalyzed by a fucose-1-phos-
phate pyrophosphorylase (EC 2.7.7.30) [40]. However, 
P. falciparum genome lacks obvious candidate genes 
for these enzymatic activities and [3H]fucose  is not 

significantly incorporated by the parasite, supporting 
the idea that most of the GDP-Fuc in the blood stages 
of P. falciparum is formed through the de novo biosyn-
thetic pathway, i.e. conversion from GDP-Man (Fig.  1 
and Table  1) [2, 13, 15]. Nevertheless, the utilization of 
GDP-[3H]Fuc by P. falciparum lysates suggests that the 
GDP-Fuc donor is used by the parasite in fucosylation 
reaction(s) as yet unidentified [15, 41].

Fucose has not yet been described in any glycoconju-
gates from P. falciparum. Hence, the fate and importance 
of GDP-Fuc for P. falciparum remains unknown [6, 9]. 
Our own preliminary data supports the presence of a 
fucose-containing glycan in the surface of the parasite, 
since a PfGMD null mutant shows a decreased labelling 
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with fucose-binding Ulex europaeus agglutinin I (UEA-
I) (Izquierdo and Samuelson, in preparation). Thus, 
despite the non-essentiality of GDP-Fuc for the growth/
replication of the parasite in the blood-stage, it seems 
that P. falciparum presents, at least, a fucosyltransferase 
activity. The best candidate for a GDP-Fuc dependent 
glycosyltransferase activity in the parasite is a protein 
O-fucosyltransferase 2 (PoFUT2) homolog conserved 
in the genome (Table  1). In other organisms, PoFUT2 
is involved in the O-fucosylation of TSR domains [42]. 
Remarkably, there are several TSR domain-containing 
proteins identified in P. falciparum with essential roles 
for infectivity and survival [37]. For instance, thrombos-
pondin-related anonymous protein (TRAP) is crucial 
for sporozoite gliding motility and hepatocyte invasion, 
whereas merozoite TRAP (MTRAP) plays a role as puta-
tive adaptor between the merozoite invasion machin-
ery and the surface proteins that mediate erythrocyte 
adhesion [43, 44]. CS protein, the main component of 
the RTS,S malaria vaccine, is involved in sporozoite 
infection and also contains an altered TSR domain [45]. 
The expression of TRAP and CS protein fragments in 
HEK293T cells showed that their TSR domains were 
modified with fucose residues, presumably by PoFUT2 
present in HEK293T cells [17, 18]. Interestingly, peptides 
of PfGMD, PfFS and PoFUT2, the three principal compo-
nents for GDP-Fuc metabolic route and O-fucosylation 
machinery, have been detected in the sporozoite stages of 
the parasite, when the surface of the cell is covered with 
CS and TRAP [46]. Altogether, the data strongly suggests 
the presence of an active PoFUT2 mediated O-fuco-
sylation mechanism in sporozoites, which needs further 
exploration.

UDP‑N‑acetyl glucosamine
UDP-N-acetyl glucosamine (UDP-GlcNAc), the donor 
for all GlcNAc transferases, plays an important role in 
several eukaryotes. It is essential in Leishmania major 
and in Trypanosoma brucei for growth and survival in 
the mammalian host [47, 48]. There are two main active 
pathways for UDP-GlcNAc biosynthesis in P. falciparum: 
a conventional de novo pathway and a salvage pathway 
fed by glucosamine (GlcN) (Fig. 1). The de novo pathway 
(the amino-sugar pathway) starts with the conversion 
of Fructose-6P (Fru6P) into Glucosamine-6P (GlcN6P) 
through the glucosamine-fructose-6-phosphate ami-
notransferase activity (GFPT; EC 2.6.1.16) [13, 15]. The 
next step, which is the acetylation of GlcN6P to generate 
N-acetyl-glucosamine-6P (GlcNAc6P), remains a mys-
tery in P. falciparum since a candidate gene encoding for 
the glucosamine-phosphate-N-acetyltransferase (GNA) 
activity (EC 2.3.1.4) cannot be identified in the genome 
(Table  1). GNA enzymes have been characterized in 

several eukaryotes, including S. cerevisiae and T. brucei, 
but despite their well-conserved secondary structure, the 
amino acid sequences are often diverse [49, 50]. Besides, 
the presence of various histone-acetylases makes it chal-
lenging to unequivocally identify a P. falciparum GNA 
in the genome. After acetylation, GlcNAc6P is converted 
into N-acetyl-glucosamine-1P (GlcNAc1P) by a phospho-
acetylglucosamine mutase (PAGM, EC 5.4.2.3). The last 
step is catalyzed by an UDP-N-acetylglucosamine pyroph-
osphorylase (UAP, EC 2.7.7.23) which converts GlcNAc1P 
into UDP-GlcNAc [13, 15]. The salvage pathway for UDP-
GlcNAc production exists possibly due to the action of 
hexokinase (HK; EC 2.7.1.1) which catalyzes the phos-
phorylation of glucosamine (GlcN) to GlcN-6-P which 
then feeds the same route as the de novo pathway (Fig. 1, 
Table  1) [15]. Several studies demonstrate the existence 
of this salvage pathway since GPI-anchors can be labelled 
with [3H]GlcN [2, 20, 51]. However, the contribution of 
this pathway in vivo seems to be minor, as GlcN is not an 
abundant sugar within the parasite hosts. As in the case of 
GDP-Man, the UDP-GlcNAc pathway is predicted to be 
essential in P. falciparum as it feeds GPI-anchor biosyn-
thesis, required for survival and infectivity [9].

UDP-GlcNAc is used in P. falciparum N-glycosylation. 
Despite that the presence of N-glycans in parasite pro-
teins was initially controversial [2, 52] recent work show 
evidences of the presence of short N-glycans on the sur-
face of P. falciparum trophozoites and schizonts [6]. This 
agrees with the synthesis of Dolichol-PP (Dol-PP) linked 
GlcNAc and GlcNAc2 glycan precursors [7] and the con-
servation in the parasite’s genome of the genes involved 
in the biosynthesis of P. falciparum N-glycans: ALG7 
(EC 2.7.8.15), ALG13/ALG14 (EC 2.4.1.141) and STT3 
(EC 2.4.99.18) (Table  1). ALG7 transfers GlcNAc, from 
UDP-GlcNAc, to the ER-membrane Dol-PP forming 
Dol-PP-GlcNAc [7, 53]. ALG13/ALG14, a heterodimeric 
UDP-GlcNAc transferase complex, uses UDP-GlcNAc 
as donor substrate for the extension of Dol-PP-GlcNAc 
to Dol-PP-GlcNAc2. ALG14 acts as a scaffold, recruit-
ing ALG13 (which retains a consensus UDP-sugar bind-
ing site such as ALG7) to the cytosolic face of ER where 
occurs the catalysis of Dol-PP-GlcNAc2 [54–56]. STT3, 
normally part of a 5 subunit complex, comprising of 
OST1, WBP1, STT3, OST4 and OST3, but OST4 seems 
to be missing from the complex [52], which catalyzes the 
transfer of GlcNAc and GlcNAc2 from Dol-PP-linked oli-
gosaccharides to “sequon” Asparigine residues (N-X-T/S) 
in the nascent protein (Fig.  2) [7, 57, 58]. Interestingly, 
the N-linked glycosylation blocker tunicamycin is lethal 
for the parasite when it is exposed to the compound for 
two developmental cycles (more than 48  h), although 
the authors did not relate that effect to N-linked oligo-
saccharide biosynthesis [59, 60]. Furthermore, if these 
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short N-glycans elicit a specific immune response in the 
human host, they may be interesting as xenoantigens 
since these glycans are not expected to be present in the 
human glycome.

GlcN, the deacetylated form of GlcNAc, is an integral 
component of GPI-anchors (Fig.  2). To generate GlcN-
PI, two reactions take place in the cytoplasmic side of the 
ER membrane: the transfer of GlcNAc from the UDP-
GlcNAc donor to the phosphatidylinositol (PI) and the 
deacetylation of GlcNAc-PI to GlcN-PI (Fig. 2) [3, 13, 25, 
27]. The first reaction is catalyzed by a phosphatidylino-
sitol N-acetylglucosaminyltransferase (EC 2.4.1.198). In 
mammals this reaction is associated to a complex of six 
proteins [27, 61–64] and four subunits are conserved in 
the genome of the parasite [13]. N-acetylglucosaminyl 
phosphatidylinositol deacetylase (EC 3.5.1.89) is respon-
sible for the deacetylation of GlcNAc-PI [13, 27]. Two 
candidate genes (Table  1) show certain homology to 
PIG-L that encodes for a de-N-acetylase in other organ-
isms. However, the specific gene encoding for PIG-L in 
P. falciparum has not been functionally characterized 
[13, 65]. Once formed in the cytoplasmic side of the ER, 
the GlcN-PI GPI-precursor migrates to the luminal side 
for the addition of the mannose residues. GPI-anchored 
proteins are crucial for the parasite infectivity, virulence 
and survival. GPIs are also significant pro-inflammatory 
endotoxins of P. falciparum that, over their release after 
RBC rupture, induce cytokine and adhesin expression in 
macrophages and the vascular endothelium that corre-
lates with severe malaria [22, 66, 67].

UDP‑galactose
The incorporation of galactose into glycoproteins and 
glycolipids in eukaryotic cells is through the activated 
sugar precursor UDP-galactose (UDP-Gal). UDP-Gal 
was recently identified in the blood stages of the P. fal-
ciparum life cycle [15]. A candidate gene for a UDP-
glucose 4-epimerase (EC 5.1.3.2) activity that produces 
UDP-Gal via the epimerization of UDP-glucose has 
yet to be identified (Table  1) [13]. Therefore, the pro-
duction of this sugar nucleotide can be performed via 
activation of galactose 1 phosphate (Gal1P) by Gal1P 
uridylyltransferase (EC 2.7.7.12) which has also not been 
identified in the parasite’s genome. Other possibilities are 
enzymes with a UTP-glucose-1-phosphate uridylyltrans-
ferase activity (UGP, EC 2.7.7.9) presenting also a weak 
galactose-1-phosphate uridylyltransferase activity (EC 
2.7.7.10), as occurs in mammals; or a broad substrate 
range UDP-sugar pyrophosphorylase (USP, EC 2.7.7.64) 
as described in plants and Leishmania major [68–71]. 
However, although galactose competes for PfHT1 hexose 
permease [72, 73], there is not a clear galactokinase (EC 
2.7.1.6) candidate in the parasite genome. Furthermore, 

the biological relevance of the UDP-Gal pool is unknown 
(Fig. 1), and the presence of UDP-Gal and galactose-con-
taining glycoconjugates (either glycolipids and/or glyco-
proteins) in the parasite remains a controversial issue.

The first evidences of the presence of galactosylated gly-
coconjugates in P. falciparum were reported by Ramasamy 
and Reese when they showed the reduction of the anti-
genicity of certain parasite proteins from infected red 
blood cells after a galactosidase treatment [74, 75]. Fur-
thermore, it was observed that titers of anti-α-gal Abs 
were significantly elevated in sera collected from subjects 
living in malaria endemic areas or patients with acute P. 
falciparum malaria in Asia [76]. Maréchal et al. described 
the incorporation of radiolabelled UDP-Gal by late blood-
stage P. falciparum lysates [77]. They also explored the 
presence of galactose-containing glycolipids in the apico-
plast membranes, a common trait in plastids from plants 
and algae [78]. However, a recent lipidomic analysis of the 
parasite’s organelle confirmed the absence of galactoglyc-
erolipids in P. falciparum apicoplast [79]. Ramasamy and 
Field also demonstrated that terminal α-galactosylation 
was minimal in P. falciparum late asexual blood stages, 
judging by α-galactose-specific lectin binding and UDP-
[3H]Gal incorporation [80]. Nevertheless, recently Yilmaz 
et  al. provided further evidences of the presence of 
α-galactose on the surface of P. falciparum sporozoites, 
based on α-galactose-binding Bandeiraea (Griffonia) sim-
plicifolia-I isolectin IB4 labelling of sporozoite surfaces. 
Interestingly, they also demonstrated the protective effect 
against malaria associated to anti-α-galactose antibod-
ies [19]. Thus, the UDP-galactose pool identified in the 
blood-stages of the parasite may possibly also be present in 
other life-stages and contribute to the biosynthesis of the 
proposed novel galactose-containing glycoconjugates [15]. 
This would also suggest the existence of at least one uni-
dentified α-galactosyltransferase in the parasite genome.

UDP‑glucose
In eukaryotes UDP-glucose (UDP-Glc) is synthetized 
through an isomerization between glucose-6-phosphate 
(Glc6P) and glucose-1-phosphate (Glc1P) catalyzed by a 
phosphoglucomutase (PGM; EC 5.4.2.2). Glc1P is further 
activated to the sugar nucleotide generally by UTP-glu-
cose-1-phosphate uridylyltransferase (UGP; EC 2.7.7.9) 
(Fig. 1). A homolog of PGM is present and expressed in 
the genome of P. falciparum, whereas the activation of 
Glc1P to UDP-Glc remains unknown as two enzymatic 
activities might be involved (see above): a UGP (EC 
2.7.7.9), as in mammals [81] or a USP (EC 2.7.7.64), as in 
plants and L. major (Table 1) [15, 69, 82]. UDP-Glc lev-
els in P. falciparum are relatively abundant in comparison 
to other sugar nucleotide pools identified on the blood 
stages [15]. The first evidences of UDP-Glc usage date 
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back to 1994 when its incorporation/usage was detected 
in P. falciparum extracts [41].

A potential fate for UDP-Glc is the N-glycan-depend-
ent quality control (QC) mechanism of glycoprotein fold-
ing. The mechanism consists of a UDP-Glc:glycoprotein 
glycosyltransferase (UGGT) and a Dol-P-Glc synthase, 
responsible for the biosynthesis of Dol-P-Glc precursors. 
UGGT normally glucosylates N-glycans of misfolded 
proteins in the ER in order to be recognized by the cal-
reticulin/calnexin refolding system [83–87]. However, 
the N-glycan precursors synthetized by P. falciparum are 
constituted only by one or two GlcNAc residues miss-
ing the mannose residue that acts as UGGT acceptor. 
The parasite also lacks homologs for the components 
involved in this QC system [7, 88]. Another possible out-
come for UDP-Glc may be the O-glucosylation of specific 
protein domains, such as epidermal growth factor (EGF) 
repeats [89] and/or the glucose substitution of O-fucose 
residues in TSR domains [90]. Interestingly, the crystal 
structures of HEK293T expressed recombinant CS and 
TRAP proteins shows both fucose and hexose residues 
attached to their TSR-domains [17, 18]. In any case, there 
are no clear candidates for glucosyltransferases in the 
parasite genome.

The UDP-Glc pool may also be related to the synthesis 
of glucose containing lipids. Glycolipids, as components 
of cellular membranes, play important roles in cell–cell 
contacts, membrane integrity and intracellular signaling 
[91–93]. In P. falciparum, glucose-containing lipids have 
been detected and an active glucosylceramide synthase 
activity (GCS; EC 2.4.1.80) has been identified in the 
parasite. This enzymatic activity adds glucose residues 
to dihydroceramide acceptors and is dependent on UDP-
Glc [91, 94].

Concluding remarks
There are still many challenges for the community to 
tackle when studying the glycobiology of P. falciparum. 
Glycosylation has always been a controversial issue in this 
parasite due to several reasons such as difficulties con-
cerning the isolation and culturing of parasites; compli-
cations due to the interconnected nature of P. falciparum 
and its mammalian host cell membranes and structures; 
technical limitations of metabolic tracing through classi-
cal methodologies; and the lack of appropriate tools for 
genetic manipulation and culture methods standardiza-
tion [9]. It seems clear that, besides GPI-anchors proteins, 
there is a limited scope for other types of glycosylation 
processes in P. falciparum, as compared to other proto-
zoan parasites such as Trypanosoma spp. and Leishma-
nia spp., at least during the intracellular blood stages of 
the parasite. This may be due to the limited resources for 
P. falciparum within the relative biochemically inert red 

blood cell, including why there is a lack of sialyltransferase 
activities. Nonetheless, striking new pieces of evidence 
are emerging regarding overlooked glycosylation reac-
tions that might be important for the parasite’s survival, 
infectivity and antigenicity. Furthermore, there is an obvi-
ous lack of knowledge about the presence and nature of 
parasite glycosylations during its extracellular stages.
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