50 research outputs found

    Non-steroidal anti-inflammatory agents, tolmetin and sulindac, inhibit liver tryptophan 2,3-dioxygenase activity and alter brain neurotransmitter levels

    Get PDF
    Hepatic tryptophan 2,3-dioxygenase (TDO) is one of the rate-limiting enzymes in tryptophan catabolism and plays an important role in regulating the physiological flux of tryptophan into relevant metabolic pathways. In this study, we determined the effect of the non-steroidal anti-inflammatory agents, tolmetin and sulindac, on rat liver TDO activity and the subsequent changes in the hippocampal and striatal neurotransmitter levels. The amount of melatonin produced by the pineal gland was also measured using high performance liquid chromatography (HPLC). Treatment of rats with tolmetin or sulindac (5 mg/kg/bd for 5 days) significantly inhibited liver TDO activity. The results show that whilst tolmetin and sulindac increase serotonin levels in the hippocampus, these agents also significantly reduce dopamine levels in the striatum. Tolmetin, but not sulindac, increased the amount of melatonin produced by the pineal gland. The results of this study suggest that whilst tolmetin and sulindac may be beneficial for patients suffering from depression, these agents also have the potential to induce adverse effects in patients suffering with neurological disorders such as Parkinson's disease

    An investigation into the neuroprotective properties of the non-steroidal anti-inflammatory agents tolmetin, sulindac and turmeric

    Get PDF
    Accumulating evidence suggests that anti-inflammatory agents and antioxidants have neuroprotective properties and may be beneficial in the treatment of neurodegenerative disorders. In the present study, the possible neuroprotective properties of tolmetin, sulindac and turmeric were investigated. The antioxidant effects of tolmetin and sulindac were determined by inducing free radical generation with quinolinic acid (QA), cyanide or iron (II) in rat brain homogenates or primary hippocampal neurons. Tolmetin and sulindac significantly reduce lipid peroxidation and scavenge the superoxide anion. Metal binding studies were conducted to determine whether metal chelation is a possible mechanism through which these agents reduce QA and iron (II)-induced lipid peroxidation. UV/VIS, infrared spectroscopy as well as electrochemical studies show that both agents bind to iron (II) and/or iron (III). Histological examination of the hippocampus showed that pre-treatment of animals with tolmetin or sulindac offers protection against intrahippocampal injections of QA. These agents also attenuate QA-induced apoptosis and reduce the loss of neurons in the hippocampus. The co-incubation of primary hippocampal neurons with the NSAIDS also enhanced cell viability which is significantly reduced by QA. Behavioural studies using a water maze showed that the treatment of animals after QA-induced neurotoxicity reduces QA-induced spatial memory loss. Tolmetin and sulindac also reduced glutathione depletion and protein oxidation in rat hippocampus. Both NSAIDS inhibit liver tryptophan 2,3-dioxygenase activity in vitro and in vivo and subsequently increased hippocampal serotonin levels. However, both NSAIDS also reduce dopamine levels in rat striatum. Tolmetin but not sulindac increased the synthesis of melatonin by the pineal gland. The active components of turmeric known as the curcuminoids were separated using preparative thin layer chromatography (TLC). The purity was confirmed by TLC, NMR and mass spectrometry. The environmental toxin lead, induces lipid peroxidation and reduces primary hippocampal neuronal viability. The co-incubation of the neurons with the curcuminoids significantly reduces lead-induced lipid peroxidation and enhances neuronal cell viability in the presence of lead. Lead-induced spatial memory deficit is also attenuated with curcumin, demethoxycurcumin but not bisdemethoxycurcumin. The curcuminoids also reduce lead-induced hippocampal glutathione depletion and protein oxidation. Metal binding studies show that the curcuminoids bind to lead and is another possible mechanism through which the curcuminoids reduce lead-induced neurotoxicity. The findings of this study indicate a possible role of tolmetin, sulindac and turmeric in neurodegenerative disorders such as Alzheimer’s disease. However, tolmetin and sulindac reduce dopamine levels

    Prevalence of anaemia and blood transfusion in elective hip arthroplasty surgery at two academic hospitals

    Get PDF
    https://drive.google.com/file/d/1fYXzGEWnGM5UWBnCjJuxJcQS-5wYIREN/view?usp=sharinghttps://drive.google.com/drive/folders/1QTkBhW9c3Hz7TnGlH2btYTOHOJfp5zfD?usp=sharinghttps://drive.google.com/drive/folders/17PIDbnzmF1jA8s5V6j3EvKx4nM40-Ck6?usp=sharin

    Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis

    Get PDF
    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention
    corecore