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Abstract Arachidonic acid (AA) and its metabolites have recently generated a heightened 

interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of 

the AA cascade, first and foremost COX inhibitors, which have originally been of interest in 

the treatment of inflammatory conditions and certain types of cardiovascular disease, are now 

attracting attention as an arsenal against cancer. An increasing number of investigations 

support their role in cancer chemoprevention, although the precise molecular mechanisms that 

link levels of AA, and its metabolites, with cancer progression have still to be elucidated.  

This article provides an overview of the AA cascade and focuses on the roles of its inhibitors 

and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of 

cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and 

CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular 

mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. 

Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to 

reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put 

forward, suggesting a novel and integrated approach in viewing the molecular mechanisms 

and complex interactions responsible for the involvement of AA metabolites in 

carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour 

prevention. 

 

Keywords Arachidonic Acid, COX inhibitors, LOX inhibitors, CYP450, cancer  
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INTRODUCTION 

Tumourigenesis is a multi-factorial sequential process which usually takes many years to 

progress. To date, the greatest challenge in cancer prevention and treatment still lies in 

identifying the multitude of cellular interactions of the complex and partially interconnected 

pathways critical to malignant cell proliferation, cell survival, tumour metastasis and neo-

angiogenesis. Among the vast number of factors involved in tumour progression, arachidonic 

acid (AA) and its metabolites have recently generated a heightened interest due to growing 

evidence of their significant role in cancer biology. 

As one of the body’s essential fatty acids AA is required by the majority of mammals. Its 

metabolites, collectively termed eicosanoids, are converted from AA by the catalytic activities 

of three key enzymes, namely cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome 

P450 (CYP450). The eicosanoids comprise a number of lipid signalling mediators that play a 

central role in cellular signalling cascades of physiological and pathophysiological relevance. 

Although their involvement in the development of human cancer has long been suggested, it 

is only recently that they have been identified as active carcinogens or tumour promoters, 

their aberrant or increased expression levels having detrimental effects on cancer development. 

So far, inhibitors of the AA cascade, first and foremost COX inhibitors, have mainly been of 

interest in the treatment of inflammatory conditions and certain types of cardiovascular 

disease. However, an increasing number of investigations support their role in 

chemoprevention of cancer, although the precise molecular mechanisms that link levels of 

AA, and its metabolites, with cancer progression have still to be elucidated. 

In carcinogenesis, relatively few human cancer risk factors/activators, such as exogenous 

chemicals, UV light, stress, endogenous enzymes, transcription factors, growth factors and 

cytokines act purely in either cytotoxic or mitogenic fashion. Instead, the majority seem to 

drive cell proliferation and metastasis through mechanisms of inflammation. Evidence for the 
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role of inflammation in cancer comes from a large number of epidemiological observations, 

indicating that regular and prolonged treatment with a vast number of synthetic anti-

inflammatory drugs, including non-steroidal anti-inflammatory drugs (NSAIDs) such as 

aspirin, can reduce the incidence and recurrence of several human cancers by up to 50% [1, 2, 

3, 4, 5]. 

In cancer treatment, inhibition of tumour promotion is key, whether in the form of tumour 

prevention or inhibition of tumour progression. Angiogenesis, which plays a key role in 

carcinogenesis, is largely dependent on various exogenous signalling molecules that induce 

and inhibit neovascularisation. The formation of new blood vessels is critical for cancer 

progression since the growth potential of cells is limited by availability of nutrients. 

Furthermore, new tumour vessel growth often coincides with tumour metastasis and is of 

prognostic significance. Therefore, by targeting initiators, co-carcinogens and tumour 

promoters, tumour growth could potentially be prevented. Unfortunately, the identification of 

such agents can be difficult. Moreover, the real challenge does not usually begin until after an 

appropriate target has been identified and the investigations on the exact roles, molecular 

mechanisms and signalling pathways reveal complex interdependencies, which raise many 

more questions. 

This article focuses on the roles of inhibitors of the AA cascade and their implication in 

cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and 

neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. 

Downstream effects of inhibition and modulation of AA metabolites are exemplified by 

reviewing the molecular mechanisms of action of a selected number of inhibitors of the 

named catalytic pathways. In addition, the protective effects of dietary omega-3 fatty acids 

and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth 

are mentioned. Finally, a proposal is put forward that outlines signalling and cross-talk 
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between the AA cascade, inflammatory mediators and cell signal transduction pathways, 

suggesting a novel and integrated approach in viewing the molecular mechanisms and 

complex interactions responsible for the involvement of AA metabolites in carcinogenesis. 

 

THE ARACHIDONIC ACID CASCADE 

AA (cis-,cis-,cis-,cis-5,8,11,14-eicosatetraenoic acid) is a 20-carbon polyunsaturated fatty 

acid and the central eicosanoid precursor in mammalian cells. Since AA cannot be 

synthesized de novo from animal cells, most of AA in the human body is derived from 

linoleic acid, which can be obtained only from dietary sources. After biosynthesis of AA from 

its precursor, it is esterified into the phospholipids of the outer cell membranes. Each 

membrane phospholipid contains two fatty acids, some of which are the essential fatty acids 

(EFAs) AA, eicosapentaenoic acid (EPA) or dihomo γ-linolenic acid (DGLA) [6]. 

The first step in the AA cascade (Figure 1) is cleavage and release of AA from the 

phospholipid-bound form. It is suggested that this may be achieved with the assistance of at 

least one of three different enzymes, namely phospholipase A2 (PLA2), phospholipase C and 

phospholipase D [7]. PLA2, however, is the only phospholipase that seems to be able to 

release free AA directly in a single-step reaction, by hydrolysing an ester bond at the sn-2 

position of phospholipids [8], which is why it features as the main phospholipase of interest in 

most literature in connection with AA metabolism. Mammalian cells contain several isoforms 

of the enzyme PLA2 [9 ], which receive their stimulatory signals from a vast range of 

inflammatory signals, cytokines, growth factors and hormones. 

The majority of AA metabolites can act both as pro- and anti-inflammatory mediators [10], 

modulating gene expression, cytokine signalling and other immune regulatory factors. 

Figure 1 
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The AA Metabolic Pathways 

Both endogenous and exogenous AA levels have been shown to mediate events critical to 

cancer development. For example, evidence indicates that free AA can induce apoptosis via 

conversion of sphingomyelin to ceramide, which triggers the release of pro-apoptotic proteins 

[11, 12]. As a result, inhibition or modulation of the AA cascade can have anti-inflammatory 

and anti-carcinogenic effects. However, to better understand the large number of AA 

derivatives and their specific actions, it is necessary to take a closer look at the three key 

metabolic pathways responsible, namely the COX, LOX and CYP450 pathways. 

 

The COX Pathway 

To date, three isoforms of the membrane bound enzyme COX have been identified, COX-1, 

COX-2 and COX-3. Although they differ in their pattern of expression and tissue distribution 

in human cells [13, 14], collectively they are responsible for the stepwise conversion of AA to 

the three classes of prostanoids. Whilst COX-1 is ubiquitous and produced constitutively in 

most mammalian cells and tissues to maintain baseline levels of prostaglandins, COX-2 is 

normally absent. However,  at the sites of inflammation COX-2 is found to be readily induced 

by a variety of stimuli associated with inflammatory responses such as cytokines, growth 

factors and other tumour promoters [15, 16]. 

The first step in the COX metabolic pathway (Figure 2) is oxygenation of AA by its 

cyclooxygenase activity to give PGG2, followed by rapid conversion of PGG2 by its 

peroxidise activity into PGH2. PGH2 is an unstable endoperoxide that functions as 

intermediate for all further synthetic steps in the COX pathway, which are catalyzed by a 

number of cell-specific isomerases and lead to the formation of the prostaglandins (PGs) 

prostacyclin D2 (PGD2), prostacyclin E2 (PGE2), prostacyclin PGF2α (PGF2α), prostacyclin I2 

(PGI2) and thromboxane A2 (TXA2) [17]. PGs are inflammatory mediators in a number of 
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conditions and diseases such as inflammation of the skin [18], arthritis [19], and asthma [20]. 

In the gastrointestinal tract PGs have been found to both have a stimulatory effect as well as 

elicit a protective function in certain inflammatory conditions. Sudden dramatic increases in 

mucosal PGs are positively correlated with disease activity of inflammatory bowel disease 

[21] and experimental colitis [22], whereas base-line expression of PGs generally exert a 

protective function against gastrointestinal injury [23] and ulcers [24] as well as acute and 

chronic enterocolitis [25]. 

 

Figure 2 

 

It has been extensively documented that overexpression of COX-2 is implicated in various 

forms of human cancers such as cancer of the lung [26], breast [27], colorectal [28], prostate 

[29], head and neck [30] and others [31, 32]. In particular, increased COX-2 expression has 

been brought in connection with tumour metastasis in colon cancer [33] where aberrant COX-

2 expression was shown to correlate with carcinogenesis in more than 80% of colorectal 

cancers [34]. In animal models COX-2 expression was found to be sufficient to induce 

tumourigenesis [35]. In head and neck cancer, increased expression levels of COX-2 was 

found to correlate with the extent of lymph node metastasis and tumour vascularisation, the 

latter being clearly correlated to PGE2 biosynthesis and vascular endothelial growth factor 

(VEGF) expression levels [ 36 , 37 ]. Corresponding findings were reported for COX 

involvement in angiogenic signalling in non-small cell lung cancers [38]. Indeed, raised PGE2 

expression was shown to trigger β-catenin signalling via the Wnt pathway, thereby activating 

the proto-oncogenes c-myc and c-jun as well as cyclin D1 expression [39, 40]. In addition, in 

gastric tumours, increased PGE2 levels were found to be correlated with tumour invasion, 

lymph node metastasis and carcinogenesis and are believed to affect VEGF signalling as a 
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result of increased matrix metalloproteinase 9 (MMP-9) activity [41, 42]. Furthermore, raised 

COX-2 expression was shown to contribute towards astrocytic carcinogenesis in gliomas, by 

promoting new blood vessel formation in connection with increased inducible nitric oxide 

synthase (iNOS) and VEGF signalling [43]. In vitro studies have reported that fibroblasts 

derived from COX-2 knockout mice displayed an up to 94% reduction in their ability to 

produce VEGF in comparison to wild-type fibroblasts [44].  

Rather intriguingly, since COX inhibition has been brought in connection with increased 

COX mRNA expression, it seems that one or more COX-produced metabolites of AA must 

act in a negative feedback mechanism on COX [45]. Finally, studies investigating the nature 

of regulatory factors controlling COX-2 expression identified reactive oxygen species (ROS)-

mediated nuclear factor-κB (NF-κB) activation to play an active role [46, 47], suggesting a 

positive feedback mechanism between expression levels of NF-κB and COX. 

 

The LOX Pathway 

In human cells, generally, four types of LOXs have been identified, namely 5-, 12- and 15-

LOX-1 and -2 [ 48 , 49 ]. Collectively, they catalyze the dioxygenation of AA into 

hydroperoxyeicosatetraenoic acids (HpETEs). Ultimately, this is followed by their conversion 

to their corresponding hydroeicosatetraenoic acids (HETEs), leading to the formation of the 

leukotrienes (LKs), lipoxins (LOs) and hepoxilins (HOs). 

5-LOX has received the greatest attention as drug target, in particular due to its role in the 

synthesis of the pro-inflammatory mediators, the LKs. The initial enzymatic step in the 5-

LOX metabolic pathway (Figure 3) requires presentation of AA to LOX by 5-LOX activating 

protein (FLAP) in a calcium- and ATP-dependent manner [ 50 ]. Subsequently, AA is 

oxygenated to give 6E,8Z,11Z,14Z-5S-hydroperoxyeicosa-6,8,11,14-tetraenoic acid (5S-

HpETE). 5S-HpETE acts as precursor for the formation of 5S-HETE and 6E,8Z,11Z,14Z-5-
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oxoicosa-6,8,11,14-tetraenoic acid (5-oxo-6,8,11,14-ETE) by peroxidase and dehydrogenase 

activity respectively or is metabolized by 5-LOX to form the unstable epoxide leukotriene A4 

(LTA 4) [51, 52]. Overall, the LOX pathway is relatively complex in that several eicosanoid 

production pathways are interlinked and synthesis of the LOs, for example, is 5-, 12- and 15-

LOX dependent [53, 54]. This is evident in the 5-LOX pathway, where synthesis of the 

lipoxins A4 (LXA 4) and B4 (LXB4) requires 12-LOX activity [55, 56]. Further metabolites for 

which LTA4 serves as precursor are leukotriene B4 (LTB4), catalysed by LTA4 hydrolase [57] 

and the cysteinyl leukotrienes (LTC4, LTD4, LTE4), LTC4 being synthesised with the aid of a 

specific glutathione-S-transferase [58]. Formation of 5-oxo-7E,9E,11Z,14Z-eicosatetraenoic 

acid (5-oxo-7,9,11,14-ETE) is the result of non-enzymatic metabolism [59]. Within the 15-

LOX pathway, two isoforms have been identified [60 ], where 15-LOX-1 preferentially 

metabolizes linoleic acid into 13S-hydroxyoctadeca-9Z,11E-dienoic acid (13S-HODE), whilst 

15-LOX-2 is mainly responsible for the production of 15S-HETE from 15S-HpETE [61, 62]. 

 

Figure 3 

 

In a more generic approach, a number of investigations have found a correlation between 

mRNA expression levels of 5- and/or 12-LOX and cancer pathobiology, whereby increased 

LOX expression levels were noted in a broad range of cancers including breast, pancreatic, 

prostate, lung, urinary bladder, leukaemia and colon cancer [63, 64, 65, 66, 67, 68, 69]. With 

regards to 15-LOX, there is evidence for opposing theories on correlation of expression levels 

with carcinogenesis where both over- and under-expression has been observed in cancerous 

cells [70, 71]. However, an increasing number of investigations seem to indicate that 15-

LOX-1 is positively, whilst 15-LOX-2 is negatively correlated with cell proliferation and 

carcinogenesis. In particular, 15-LOX-1 overexpression was found associated with decreased 

peroxisome-proliferator activated receptor γ (PPARγ) activity and subsequent increase in 
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MMP-9 signalling, whilst 15-LOX-2 expression was found associated with increased PPAR γ 

activity and a subsequent reduction in MMP-9 signalling [72, 73, 74, 75], These findings 

suggest that there is potential for both 15-LOX-1 and 15-LOX-2 inhibitors and metabolites, 

respectively, to act in an anti-inflammatory and tumour suppressive manner by decreasing cell 

proliferation and differentiation and inducing apoptosis [76, 77, 78]. In general, the 5-LOX 

pathway leads to proliferative and pro-apoptotic effects in various forms of cancer, with 

exogenous 5-HETE and cysteinyl leukotrienes having up to a fourfold proliferative effect on 

four different types of breast cancer cell lines [79]. Stimulation of 5-LOX activity was found 

to arise due to tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) and histamine 

signalling, ultimately resulting in ROS-mediated NF-κB activation [80, 81]. Furthermore, 

cancer cell growth was demonstrated in human testicular cancer tissue, where both 5- and 12-

LOX were found to promote induction of cell proliferation, an effect which was suppressed 

upon inhibition of 5-LOX [82]. In addition to its role in neoplastic transformation, 5-LOX and 

its AA metabolite 5-HETE have been shown to be involved in angiogenesis and mesothelial 

cell carcinogenesis through increased VEGF release and mRNA expression levels [83]. 

Contrary to the majority of LOX products, LXA4 and LXB4 have shown to generate effective 

anti-inflammatory responses, which may antagonize pro-inflammatory signals mediated by 

other LOX catalyzed AA derivatives [84]. 

 

CYP450 Pathway 

The CYP450 metabolic pathway is the least well-characterized pathway in connection with 

lipid metabolism in the AA cascade. Several isoforms of CYP450 catalyze the nicotinamide 

adenine dinucleotide phosphate-oxidase (NADPH)-dependent conversion of AA (Figure 4). 

The corresponding metabolites include a family of lipoxygenase-like HETEs, 

epoxyeicosatrienoic acids (EETs) and ω-HETEs which are formed by bis-allylic 
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monoxygenation, olefin epoxydation and ω-hydroxylation respectively [85]. In addition, the 

CYP450 pathway gives rise to ROS termed HpETEs, although the EETs and ω-HETEs are 

the major products of the CYP450 pathway [86].  

 

Figure 4 

 

A vast number of recent studies suggest the involvement of CYP450 metabolites in 

carcinogenesis. In particular, this has been noted in renal carcinoma, where CYP450 is 

believed to be the main catalytic pathway since COX and LOX are basically undetectable [87]. 

Aberrant CYP450 epoxygenase activity and EET synthesis was found to promote tumour 

metastasis, independent of tumour growth, in several human cancer cell lines [88]. In addition, 

it was shown to affect mitogen-activated protein kinase phosphatase-1 (MKP-1) mediated 

inactivation of c-Jun N-terminal kinase (JNK), which ultimately leads to the expression of 

cyclin D1 and cell proliferation [89]. In addition, there is evidence that EETs not only elicit 

cell proliferation but also promote neo-angiogenesis under hypoxia-induced enhanced activity 

of CYP 450 epoxygenase [90]. In addition, 14,15-EET was found to inhibit apoptosis by a 

PI3/Akt signalling pathway [91]. Furthermore, overexpression of CYP450 ω-hydroxylase, 

and in particular its catalytic product 20-HETE, is believed to be implicated in renal 

carcinoma [92] as well as tumour-angiogenesis mediated by VEGF, angiotensin II, fibroblast 

growth factor-2 (FGF-2) and epidermal growth factor (EGF) signalling [93, 94, 95, 96, 97, 

98]. The downstream angiogenic signals triggered by the various angiogenic factors acting on 

CYP450-derived metabolites are believed to be mediated by Akt-dependent phosphorylation 

and activation of eNOS as well as phosphorylation of growth factor receptors and mitogen 

activated protein kinase (MAPK) [97, 99].  
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INHIBITION OF AA METABOLISM 

Molecular Mechanisms of Inhibition 

The physiological functions of AA metabolites have been mainly identified due to 

pharmacological inhibition studies. Without the use of inhibitors with known enzyme affinity, 

the abundant evidence for a correlation between overexpression and aberrant signalling of 

COX, LOX and CYP with pathogenesis of human carcinomas would not have been possible. 

The identified capabilities of these inhibitors to date have lead to the development and/or 

further investigation of a series of novel or already existing selective and non-selective 

inhibitors, some of which are currently in phase II and III clinical trials for cancer 

chemoprevention and treatment. All three enzymes share a trait for iron dependency, whereby 

COX and CYP carry their iron in a haeme-bound moiety, whilst LOX binds its metal cofactor 

as a single ion atom bound directly to the protein itself. 

 

COX Inhibition 

COX inhibitors include the classical NSAIDs such as aspirin, ibuprofen, naproxen and 

sulindac and are generally classified according to their chemical structure. The majority of 

NSAIDs are considered to be competitive inhibitors of COX, since they require the same set 

of binding site interactions as the natural substrate AA, whereas aspirin is a covalent modifier 

of COX [100]. 

The crystallographic structure of COX-2 (Figure 5) reveals a homodimer with each 

monodimer containing three structural domains, the EGF-like, the membrane-binding and the 

catalytic domain (CD). The CD contains the active sites of both the cyclooxygenase and 

peroxidase activity. The cyclooxygenase active site is located at the end of a long 

hydrophobic channel, formed by residues Tyr385, Phe381, Phe518, Leu384 and Trp387. 

Substrate-binding requires hydrophobic interactions and hydrogen bonds to Arg120 and 
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Tyr335 as well as a salt-bridge formation between residues Arg120 and Glu524 [101]. 

Catalytic activity is exerted by residue Tyr385, which, upon binding of AA, removes its 13-

pro-S hydrogen to initiate PGG2 formation [102]. The binding of inhibitors does not seem to 

greatly influence either the conformation of the residues directly in contact with the inhibitor 

or the overall resting structure of the enzyme. No peroxidase-specific therapeutics have yet 

been developed, however, the peroxidase active site is believed to comprise substrate 

interactions between residues Gln203, His207, Val291 and Leu294 [103]. 

 

Figure 5 

Although COX-1 and -2 have the same three-dimensional protein folds and share over 60% 

amino acid sequence identity, COX-2 displays a branched substrate binding site, whereas 

COX-1 has a non-branched, conformationally less flexible structure [104, 105]. Therapeutic 

inhibitors tend to exploit this difference in substrate binding sites to ensure selective COX 

inhibition [106]. Indeed, aspirin and sulindac inhibit both COX-1 and -2, whilst the more 

recently developed drugs such as celecoxib and rofecoxib (coxibs) target COX-2 selectively, 

which gives them a better gastrointestinal profile [107, 108]. Unfortunately, recent findings 

suggest negative cardiovascular associations with long-term use of selective COX-2 inhibitors 

[109, 110]. These results have prompted the need for further investigations, such as the 

APPROVE study and the Adenoma Prevention with Celecoxib (APC) trial respectively [111, 

112], which have resulted in the recent withdrawal of rofecoxib from the global market. 

However, not all studies have found selective COX-2 inhibitors to be associated with greater 

cardiovascular risk [113, 114], which has resulted in the current controversy around the safety 

profile and application of COX-targeting drugs for the treatment of inflammatory conditions. 

This further suggests that a careful evaluation of a patient’s individual attributable risks for 

cardiovascular and gastrointestinal events is required in order to determine the most 
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appropriate anti-inflammatory strategy for each subject. In particular, the recently raised 

COX-2-dependent cardiovascular effects seem to depend on a number of variables such as 

dosing, half-life and dosing intervals. It seems obvious, that cardiovascular safety and 

gastrointestinal risks are undoubtedly connected by the interplay between PGI2 and TXA2 

biosynthesis [115 ] as a result of the varying mechanisms of action of different COX-

inhibiting drugs (Table 1). 

It has been reported that, in some cell lines, non-selective COX inhibitors as well as NSAID-

derivatives with no affinity for COX are equally effective in tumour prevention [116, 117]. In 

addition, sulindac was shown to exert its growth inhibitory and anti-inflammatory action by 

inhibiting the activity of IκB kinase β (IKK β) required to activate NF-κB [118]. Furthermore, 

NSAID treatment of COX-2 null cells were reported to induce arrest of cell proliferation, 

suggesting that NSAIDs also act through mechanisms not directly related to COX expression 

levels [119, 120]. Naturally, the above findings raise the question of the underlying mode of 

action responsible for these observations. 

 

Table 1 

 

Both in vitro and in vivo animal studies provide convincing evidence that a novel class of 

drugs that are currently in development may provide both reduced toxicity and increased 

therapeutic activity. Due to the previously mentioned gastrointestinal side-effects, nitric 

oxide-releasing NSAIDs (NO-NSAIDs) have been developed, which are meant to compensate 

for reduction in PG synthesis mediated by COX inhibition. By coupling NSAIDs with NO, it 

is hypothesized that once released, NO can exert its cytoprotective properties on the gastric 

mucosa. Investigations report significant results with chemopreventive measures being even 

greater than with traditional NSAIDs [121, 122]. 
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Aspirin 

Aspirin (Figure 6) is probably the best studied NSAID and a connection with long-term low 

dose aspirin treatment and reduction of cancer incidence in humans has been demonstrated 

[123]. 

 

Figure 6 

 

As previously mentioned, aspirin induces a covalent modification to COX by acetylating 

residue Ser530 of COX-1 and Ser516 of COX-2 located just below Tyr385 (Figure 7), 

thereby inhibiting its usual enzyme activity [124, 100]. Furthermore, it has been noted that 

aspirin-acetylated COX-2 is able to synthesize an additional metabolite from AA, namely 

15R-HETE, the enantiomer of 15S-HETE formed from AA by 15-LOX. As a result, aspirin-

acetylated COX-2 leads to a decrease in PGG2/PGH2 production since 15R-HETE is instead 

converted by 5-LOX to give 15-epimeric lipoxin A4 [125, 126]. Evidence suggests that 15-

epi-lipoxin acts similarly to natural LXA4, in that it has potent anti-inflammatory activity and 

exerts its activity by inhibiting NF-κB activation by attenuating peroxynitrite formation [127]. 

In addition, when exposed to aspirin, COX-2 expressing cells are capable of converting 

omega-3 docosahexaenoic acid (DHA) to a novel series of 17R-hydroxy docosanoids (17R-

DHAs), termed resolvins and 17R-docosatrienes (17R-DTs) [128, 129]. 

Figure 7 

 

LOX Inhibition 

Although the LOXs share the same type of protein folding, their molecular interactions vary 

from enzyme to enzyme. These mechanistic differences are mainly due to size, shape and 

mode of interaction of the catalytic entity of their substrate binding channels. 
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5-LOX inhibitors generally exert their effect via three modes of action: redox mechanisms, 

iron-chelating effects or non-redox-related actions. Zileuton (Figure 8), is currently the only 

approved 5-LOX inhibitor on the market and is prescribed for the treatment of asthma. 

However, a growing body of investigations support its chemopreventive effects in cancer 

[130]. A drug with proven selectivity for 12-LOX, Baicalein, has its origin in Chinese herbal 

medicine and has been found to directly inhibit proliferation and induce apoptosis in human 

myeloma cells [131]. Another compound recognized for its pan-LOX inhibitory activity is 

nordihydroguaiaretic acid (NDGA), which has found frequent application in intervention 

studies but is not licensed for application in humans. 

 

Figure 8 

 

The crystallised protein structure of 5-LOX (Figure 9) reveals its three-dimensional protein 

folds and relative positions of the iron and substrate binding sites within the enzyme. The 

amino acid residues crucial for iron binding and enzyme activity were determined to include 

His367, His550, His372 and Glu376 [132]. Site-directed mutagenesis studies have identified 

the critical residue for enzyme activity and control of stereochemistry of oxygenation to be 

Ala404, which is located between the iron binding site and the likely entrance to the substrate 

binding channel [133]. LOX substrate is believed to bind to the protein through π-electron, 

charged and hydrophobic interactions. In particular, it is suggested that the C11 double bond 

contained in AA participates in π-π interactions in the substrate binding channel [134]. 

 

Figure 9 

 

Another family of inhibitors such as MK-886 and AA-861 do not target 5-LOX directly but 

are rather aimed at competing for or altering the active site of FLAP, thereby interfering with 
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AA presentation to 5-LOX [135, 136]. However, in vitro studies suggest that FLAP inhibitors 

such as MK-886 may in fact exhibit their therapeutic effects by non-FLAP associated 

metabolic interactions [137]. Since the majority of 5-LOX inhibitors are known to act via a 

redox mechanism, it has been hypothesized that they may be responsible for the production of 

ROS which could be responsible for drug toxicity [138]. 

 

CYP450 Inhibition 

Human CYP450 has several isoenzymes, all of which participate in the metabolism of AA 

and whose sequential identity may differ by up to 20%. CYP450s apply a certain flexibility to 

substrate choice, meaning they accept a broader range of ligands. Therefore, different ligands 

can induce a range of conformational changes to the overall protein structure. 

The catalytic enzyme activity of CYP450 differs from the usual peroxidase, in that cleavage 

of the oxygen double bond is mediated by the Cys haeme ligand via electron donation. This is 

believed to be due to the fact that unlike other enzymes, CYP450 contains no acid–base 

catalytic groups near the oxygen binding site. Therefore, the oxygen binding cavity is lined 

with aliphatic and aromatic residues [139]. 

The three-dimensional structure of CYP450 (Figure 10) depicts the residues believed to exert 

most of the substrate-binding interactions, such as Leu208 and Gly296. In addition, the 

ligands are found to be stabilized in the binding groove by hydrogen-bonding interaction with 

residues Asp293 and Arg108 [139]. 

 

Figure 10 

 

Recent findings suggest that, in addition to significantly reducing cell proliferation, CYP450 

ω-hydroxylase inhibition has an affect on COX activity and can reduce PGE2 synthesis by up 

to 50% [140]. This would indicate that there must be some sort of feedback mechanisms in 
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place between the metabolites of CYP450 and COX pathways and their enzymes and/or 

synthases. 

 

Influence of Dietary Fats on AA Cascade 

Epidemiological studies suggest an association between dietary fat intake and risk of 

carcinogenesis for various forms of malignant tumours [141, 142]. Most prominently, this 

association has been noted in cultures such as Greenland, Alaska and Japan, where a natural 

high dietary intake of fish oils is maintained. As a result, a number of publications have been 

able to demonstrate that an increased consumption of omega-3 fatty acids such as EPA and 

DHA lead to a reduction in colorectal [ 143 , 144 , 145 ] and breast [ 146 ] cancer risk 

respectively. Clearly, the main role of omega-3 in tumourigenesis lies in the reduction of 

cancer risk and inhibition of cancer cell growth [147]. 

Of the catalytic enzymes discussed, omega-3 has been found to bind to LOX and COX to 

produce a series of bioactive mediators (Figure 11). Metabolism of EPA notably produces 

18R- hydroxy-eicosapentaenoic acid (18-R-EPA) termed resolvin E1 whilst DHA-derivatives 

include resolvins D1-D4, the 17S-hydroxy-docosahexaenoic acids (17S-DHAs), as well as the 

17S-docasatrienes (17S-DTs) [148, 149]. The beneficial effects of resolvin E1 were shown to 

originate from blocking stimulation of LTB4 and inhibiting LTB4-induced NF-κB activation 

by binding to the LTB4 receptor BLT1 [150]. 

 

Figure 11 

 

A recent study has put forward supporting evidence that omega-3 fatty acids and their 

bioactive products significantly reduce pathological angiogenesis, both through reduction of 

hypoxic stimulus as well as through resolvin-mediated activity [151]. 
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Furthermore, omega-3 has shown to reduce COX-2 expression in comparison to omega-6, 

which was found to increase COX-2 expression levels and induce in vitro invasion in brain-

metastatic melanoma cells [152]. Other investigations were able to demonstrate COX-2 

independent suppression of tumour cell growth both in an animal model and cultured cells 

[153]. The method of omega-3 mediated chemoprevention is believed to be partially due to 

the competition with AA for enzyme substrate. In addition, recent studies were able to assign 

its therapeutic properties to a marked increase in production of 13S-HODE as well as 

inhibition of protein kinase C (PKC)- and NADPH-mediated activation of NF-κB and ROS 

production respectively [154]. Intriguingly, a number of publications can be found suggesting 

both increased and decreased production of free radicals and ROS to be the reason for 

modification of carcinogenic processes by omega-3 [ 155 ]. Furthermore, omega-3 

supplementation was reported to significantly reduce synthesis of pro-inflammatory 5-LOX 

metabolites LTA4 and lipid peroxides, thereby inhibiting IL-1β and TNF-α release [156]. 

The above summarized findings support the importance of considering dietary fats and their 

ratios in tumour prevention and as therapeutic supplements for inflammatory related diseases 

and cancer. 

 

DISCUSSION 

A number of investigations document a correlation between aberrant expression of AA 

metabolites and disease prevalence and progression. The two regulatory factors influencing 

AA metabolism are substrate availability and expression levels and activity of the catalytic 

enzymes. Within the AA cascade, COX and LOX probably produce the most potent 

inflammatory signalling molecules and combined blocking of their metabolic pathways were 

shown to have additive effects in colon cancer cells [157]. 
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Furthermore, a high incidence in expression levels of the G-protein coupled receptors of the 

LOX pathway, such as cysteinyl LT receptors CysLT1 and CyxLT2, as well as LTB4 

receptors BLT1 and BLT2, has been shown to correlate negatively with patient survival and 

cancer inhibition [158 , 159 , 160 , 161 ,162 ]. Along similar lines, evidence supports the 

involvement of the prostanoid receptors of the COX pathway. In particular, the four PGE 

receptors EP1-4 have been found to be positively correlated with COX-1 and -2 expression 

and tumour development, by affecting major signalling pathways such as the MAP kinase 

pathway as well as PPARγ-mediated transcription factor activation [163, 164]. Therefore, it is 

questionable whether pursuing further upstream inhibitors of the AA cascade is the right way 

forward. Evidence for an array of feedback loops is available, whereby coupling of PGE2 

levels and FLAP activation [165] as well as interaction between COX-2, 5-LOX and 15-LOX 

[166] are most likely only a subset of a much greater scale. Since inhibition of one pathway is 

likely to upregulate the other available metabolic routes of AA [167], it seems worthwhile to 

further investigate inhibition of the AA catalytic enzymes. As such, combined target 

inhibition such as COX/LOX, LOX/CYP450 or COX/CYP450, as well as inhibition of AA 

metabolites and/or their receptors, such as PGE2 and TXB4, may prove useful. 

Although COX-inhibition studies have demonstrated a correlation between downregulation of 

COX-derived AA metabolites and inhibition of cell proliferation and apoptosis, other 

publications suggest that induction of apoptosis is in fact not a direct result of inhibition of 

COX-2. These contradictory propositions find their origin in the controversy around the 15-

LOX pathway. Evidently, further investigations are required in order to conclusively confirm 

or deny a beneficial effect of 15-LOX metabolites. In addition, it seems necessary to gain 

further knowledge on cross-talk between phospholipases A2, C and D and the level and extent 

of their individual contribution towards AA metabolism. 
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Another demanding area of research is the constant quest to develop inhibitors with greater 

affinity and selectivity, both of which is critical for providing inhibition of the correct 

signalling pathways as well as in avoiding detrimental side-effects in long-term treatment. 

Finally, contrary to some findings that suggest production of ROS to mediate the COX-

independent therapeutic effects of NSAIDs [168], it is suggested that NSAIDs in fact act as 

antioxidants and inhibit ROS formation. By inhibiting superoxide-mediated peroxynitrite 

formation and NF-κB activation, NSAIDs maintain inhibitory nitric oxide levels to block 

further ROS formation. Although inhibitory action of NSAIDs on NF-κB, in particular 

through sulindac, has been suggested in the past [169], no underlying molecular mechanism 

for sulindac-mediated inhibition of IKKβ activity has been put forward. This novel 

mechanism of action of NSAIDs is supported by studies on the antioxidant properties of 

NSAIDs in the brain [170] and by investigations on the scavenging activity of sulindac and its 

metabolites [171]. In a similar fashion, it can be hypothesized that the protective effects of 

omega-3 find their origin in inhibiting NF-κB and ROS activity rather than in direct inhibition 

of COX-2. 

In an attempt to combine summarised findings of the current understanding of the AA cascade 

and its molecular interactions in existing literature, an overview (Figure 12) based on a 

systems-integrated approach is proposed. Based on the assumption that the primary mode of 

action of catalytic AA enzyme inhibition is mediated by NO, ROS and NF-κB activity, a 

novel hypothesis is put forward. This idea is further supported by the observation made with 

the NO-NSAIDs, where an increase in NO has shown to have a positive therapeutic effect and 

has even significantly increased inhibitory action in comparison to that of the common 

NSAIDs. Further supportive data can be derived from the reports on COX- and LOX-targeted 

NDGA treatment. As an antioxidant and free radical scavenger, NDGA has been associated 

with profound inhibitory action, especially on the LOX pathway [172]. These findings are of 
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particular relevance, since the LOX pathway seems to generate a greater number of lipid 

peroxides and/or ROS than COX. Consequently, treatment with an antioxidant would be 

expected to give satisfactory results. 

Interactions with radical nitrogen species affect COX, LOX as well as CYP450 pathways and 

may well account for the effects of dietary omega-3 in reducing overall cancer risk. The 

underlying basis of action is not through NO itself but through its interaction with superoxide 

and subsequent production of peroxynitrite, leading to increased NF-κB activity, a connection 

which has been previously noted [173]. Naturally, these interactions depend on a number of 

factors, among which the cell types and their preferred eicosanoid signalling pathways appear 

to be key determinants. 

 

Figure 12 

 

CONCLUSION 

The examples discussed thus far illustrate that altered AA metabolism in the tumour 

microenvironment has profound impact on the pathogenesis of tumour development. Clearly, 

the complex and partially interconnected pathways as well as cross-talk and signal 

transduction mechanisms between the various players within the AA cascade have not yet 

been sufficiently considered or explored. However, investigations to date, in particular on the 

basis of inhibition studies, have identified NF-κB as one of the key signal transducers within 

the AA cascade. Collated evidence points towards its involvement in cell proliferation, 

survival, migration, inflammation, and neo-angiogenesis. 

The summarized findings contained in this review support this novel hypothesis, providing 

both a mechanistic basis of action for omega-3 intervention and NSAID-mediated inhibition 

of pro-inflammatory and oncogenic signalling. However, it is expected that the suggested 
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interactions still represent an over simplistic schematic representation of the actual processes, 

with a lot of missing links to be filled. In particular, a better understanding of the reported 

feedback mechanisms between COX, LOX and CYP450 and components of their downstream 

signal transduction pathways is required. In order to evaluate and verify these mechanisms in 

vivo, further research is necessary. Among the investigations that may hold a promise in the 

future for resolving tumourigenesis due to AA metabolism are the study of the significance 

and interaction of the formation of reactive lipid oxygen species, the better understanding of 

the precise molecular mechanisms of endogenous AA metabolites and their physiological role 

and, seeing that their presence and activity determines eicosanoid production, investigations 

of inhibitors of downstream isomerases of the AA cascade. 

It is evident that the NO/ROS/NF-κB pathway provides an interesting and challenging target 

and promising possibilities for inflammatory-mediated disease and cancer chemoprevention 

and treatment. 
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Figure 1. The Classical Arachidonic Acid Pathway. The three key enzymatic metabolic pathways of 

AA. 
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Figure 2. The COX pathway. The main AA derivatives as catalyzed by COX and its isomerases 

including chemical structures. 
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Figure 3. The LOX pathway. The main LOX-catalyzed AA derivatives including chemical structures. 
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Figure 4. CYP450 catalytic pathway. The main CYP450 catalyzed AA derivatives including their 

chemical structure. 
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Figure 5. Mouse COX-2 coupled with selective inhibitor SC-558 (PDB: 6COX). The inhibitor is 

bound to the COX active site, displayed in ball and stick form. Selected amino acid residues are 

highlighted as follows: Tyr385 (blue) Phe381 and Phe518 (yellow), Leu384 (cyan) and Trp387 

(orange). The peroxidase site is located in proximity to the bound haeme molecule (red) with the iron 

atom as red ball and residues Gln203, His207, Val291 and Leu294 in dark green stick form. 
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Figure 6. Chemical structure of aspirin. 
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A)     B)  

Figure 7. Close-up view of ovine COX-1 (PDB: 1EQG) and mouse COX-2 (PDB: 6COX) acetylation 

sites. Structural differences are visible by comparing residues Ser 530 in COX-1 and Ser516 in COX-2 

(yellow). Tyr385(orange) and Arg120(blue). A) COX-1; B) COX-2. 
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Figure 8. Chemical structures. Structural comparison between zileuton, NDGA and baicalein, a 

selective 12-LOX inhibitor for comparison. 
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Figure 9. Human 5-LOX (Swissprot: P09917). Relative position of enzyme active site: protein as gray 

ribbon; residues His367, His550, His 372 are highlighted in red, Glu376 in blue and Ala404 in yellow. 
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Figure 10. Human CYP450 2C9 bound to flurbiprofen (PDB: 1R9O). CYP450 protein (gray), 

flurbiprofen in ball and stick conformation coloured according to atoms, haeme group with iron atom 

as ball (red). Residues Leu208 (blue), Gly296 (purple) and hydrogen-bonding residues Arg108 (green) 

and Asp293 (yellow) are highlighted. 
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Figure 11. Overview of COX and LOX-catalyzed omega-3 derivatives. Both aspirin-triggered and 

non-intervened metabolism of omega-3. 
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Figure 12. Schematic representation of signalling interactions in the AA cascade. indicates cross-talk 

and signalling circuitry leading to carcinogenesis including a hypothesis for the mode of actions 

responsible for success of NSAIDs and omega-3 fatty acids in tumour prevention. 
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Chemotherapeutic 
compound: Mechanism of action: Reference: 
     
analgesics & anti-pyretics:    
Paracetamol (Acetominophen) unestablished; selective COX-3 inhibitor? Chandrasekharan NV et al. (2002) [174]; 

Schwab JM et al. (2003) [175]; Anderson BJ 
et al. (2008) [176] 

Phenacetin dual COX-1/COX-2 activity Kankuri E et al. (2003) [177] 

     

traditional NSAIDs:    

Aspirin 
dual COX-1/COX-2 activity; preference 
for COX-1 

Huls G et al. (2003) [178]; Chan AT et al. 
(2007) [179] 

Diclofenac dual COX-1/COX-2 activity; LOX 
activity? 

Falkowsk M et al. (2003) [180]; Cannon CP 
et al. (2006) [181]; Kearney PM et al. (2006) 
[182] 

Etodolac 
dual COX-1/COX-2 activity; preference 
for COX-2 

Sugimoto T et al. (2007) [183]; Okamoto A 
et al. (2008) [184] 

Ibuprofen dual COX-1/COX-2 activity 
Yao M et al. (2005) [185]; Li W et al. (2008) 
[186] 

Indomethacin 
dual COX-1/COX-2 activity; preference 
for COX-1 

Tavares AI (2000) [187]; Touhey S et al. 
(2002) [188] 

Ketoprofen dual COX-1/COX-2 activity Marjanović M et al. (2007) [189] 
Meloxicam dual COX-1/COX-2 activity; preference 

for COX-2 
Tavares AI (2000) [187]; Del Tacca M et al. 
(2002) [190]; Naruse et al. (2006) [191] 

Nabumetone 
dual COX-1/COX-2 activity; preference 
for COX-2 

Nakanishi A et al. (2001) [192]; Vural F et 
al. (2005) [193] 

Naproxen dual COX-1/COX-2 activity 
Farkouh ME et al. (2004) [194]; Kearney PM 
et al. (2006) [182] 

Nimesulide 
dual COX-1/COX-2 activity; preference 
for COX-2 

Genç S et al. (2007) [195]; Inoue T et al. 
(2008) [196] 

Piroxicam 
dual COX-1/COX-2 activity; preference 
for COX-1 Palmerini E et al. (2005) [197] 

Sulindac 
dual COX-1/COX-2 activity; preference 
for COX-1 Dvory-Sobol H et al. (2006) [198] 

     

selective COX inhibitors:    
DFU selective COX-2 inhibitor Riendeau D et al. (1997) [199]; Matsumoto 

G et al. (2004) [200]; Hétu PO et al. (2005) 
[201] 

FPA-306 selective COX-2 inhibitor Ahmed F et al. (2007) [202] 

JTE-522 selective COX-2 inhibitor 
Hashimoto H et al. (2002) [203]; Kobayashi 
H et al. (2004) [204] 

MF tricyclic selective COX-2 inhibitor 
Hétu PO et al. (2005) [201]; Dvory-Sobol H 
et al. (2006) [198] 

NS-398 selective COX-2 inhibitor Futaki N et al. (1994) [205]; Tavares AI 
(2000) [187]; Minter HA et al. (2003) [206] 

SC-560 selective COX-1 inhibitor Hétu PO et al. (2005) [201]; Brenneis C et al. 
(2006) [207]; Li W et al. (2008) [186] 

SC-58125 selective COX-2 inhibitor 
Sheng GG et al. (1997) [208]; Ding J et al. 
(2005) [209] 

     

Coxibs:    
Celecoxib selective COX-2 inhibitor Silverstein FE et al. (2000) [210]; Salomon 

SD et al. (2005) [211]; Bertagnolli MM et al. 
(2006) [112]; Arber N et al. (2006) [114] 

Rofecoxib selective COX-2 inhibitor 
Bombardier C et al. (2000) [212]; Bresalier 
RS et al. (2005) [111] 

Etoricoxib selective COX-2 inhibitor Cannon CP et al. (2006) [181] 
Valdecoxib selective COX-2 inhibitor Ott E et al. (2003) [213]; White WB et al. 

(2004) [214]; Nussmeier NA et al. (2005) 
[215] 
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Lumiracoxib selective COX-2 inhibitor Farkouh ME et al. (2004) [194] 

Parecoxib selective COX-2 inhibitor 
Ott E et al. (2003) [213]; Nussmeier NA et 
al. (2005) [215] 

     

dual COX/LOX inhibitors:    

BW-755C 
dual COX-1/COX-2 acitivty; 5-LOX 
inhibitor Leval X et al. (2002) [216] 

S-2474 
selective COX-2 inhibitor; 5-LOX 
inhibitor Inagaki M et al. (2000) [217] 

Licofelone (ML-3000) dual COX-1/COX-2 acitivty; 5-LOX 
inhibitor 

Reginster JY et al. (2002) [218]; Skelly MM 
et al. (2003) [219]; Tries S et al. (2002) [220] 

Phenidone 
dual COX-1/COX-2 acitivty; 5-LOX 
inhibitor Moon C et al. (2005) [221] 

RWJ-63556 
dual COX-1/COX-2 acitivty; 5-LOX 
inhibitor Filliatre G et al. (2001) [222] 

S-2474 
selective COX-2 inhibitor; 5-LOX 
inhibitor Inagaki M et al. (2000) [217] 

 

Table 1. Overview of most clinically applied and studied prostaglandin inhibitors 
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