605 research outputs found

    Analysis of Ωb−(bss)\Omega_b^-(bss) and Ωc0(css)\Omega_c^0(css) with QCD sum rules

    Full text link
    In this article, we calculate the masses and the pole residues of the 1/2+{1/2}^+ heavy baryons Ωc0(css)\Omega_c^0(css) and Ωb−(bss)\Omega_b^-(bss) with the QCD sum rules. The numerical values MΩc0=(2.72±0.18)GeVM_{\Omega_c^0}=(2.72\pm0.18) \rm{GeV} (or MΩc0=(2.71±0.18)GeVM_{\Omega_c^0}=(2.71\pm0.18) \rm{GeV}) and MΩb−=(6.13±0.12)GeVM_{\Omega_b^-}=(6.13\pm0.12) \rm{GeV} (or MΩb−=(6.18±0.13)GeVM_{\Omega_b^-}=(6.18\pm0.13) \rm{GeV}) are in good agreement with the experimental data.Comment: 18 pages, 18 figures, slight revisio

    Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    Full text link
    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation Strategies for Global Change, Springer, N

    Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors

    Get PDF
    The hypothalamus regulates many innate behaviors, but its development remains poorly understood. Here, we used single-cell RNA sequencing (RNA-seq) and hybridization chain reaction (HCR) to profile multiple stages of early hypothalamic development in the chick. Hypothalamic neuroepithelial cells are initially induced from prethalamic-like cells. Two distinct hypothalamic progenitor populations then emerge and give rise to tuberal and mammillary/paraventricular hypothalamic cells. At later stages, the regional organization of the chick and mouse hypothalamus is highly similar. We identify selective markers for major subdivisions of the developing chick hypothalamus and many previously uncharacterized candidate regulators of hypothalamic induction, regionalization, and neurogenesis. As proof of concept for the power of the dataset, we demonstrate that prethalamus-derived follistatin inhibits hypothalamic induction. This study clarifies the organization of the nascent hypothalamus and identifies molecular mechanisms that may control its induction and subsequent development

    Effects of Large CP violating phases on g_{\m}-2 in MSSM

    Full text link
    Effects of CP violation on the supersymmetric electro-weak correction to the anomalous magnetic moment of the muon are investigated with the most general allowed set of CP violating phases in MSSM. The analysis includes contributions from the chargino and the neutralino exchanges to the muon anomaly. The supersymmetric contributions depend only on specific combinations of CP phases. The independent set of such phases is classified. We analyse the effects of the phases under the EDM constraints and show that large CP violating phases can drastically affect the magnitude of the supersymmetric electro-weak contribution to aÎŒa_{\mu} and may even affect its overall sign.Comment: 26 pages Latex file including 4 figure

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Rare Decays of \Lambda_b->\Lambda + \gamma and \Lambda_b ->\Lambda + l^{+} l^{-} in the Light-cone Sum Rules

    Full text link
    Within the Standard Model, we investigate the weak decays of Λb→Λ+γ\Lambda_b \to \Lambda + \gamma and Λb→Λ+l+l−\Lambda_b \to \Lambda + l^{+} l^{-} with the light-cone sum rules approach. The higher twist distribution amplitudes of Λ\Lambda baryon to the leading conformal spin are included in the sum rules for transition form factors. Our results indicate that the higher twist distribution amplitudes almost have no influences on the transition form factors retaining the heavy quark spin symmetry, while such corrections can result in significant impacts on the form factors breaking the heavy quark spin symmetry. Two phenomenological models (COZ and FZOZ) for the wave function of Λ\Lambda baryon are also employed in the sum rules for a comparison, which can give rise to the form factors approximately 5 times larger than that in terms of conformal expansion. Utilizing the form factors calculated in LCSR, we then perform a careful study on the decay rate, polarization asymmetry and forward-backward asymmetry, with respect to the decays of Λb→Λγ\Lambda_b \to \Lambda \gamma, Λl+l−\Lambda l^{+}l^{-}.Comment: 38 pages, 15 figures, some typos are corrected and more references are adde

    Light cone QCD sum rules study of the semileptonic heavy ΞQ\Xi_{Q} and ΞQâ€Č\Xi'_{Q} transitions to Ξ\Xi and ÎŁ\Sigma baryons

    Full text link
    The semileptonic decays of heavy spin--1/2, Ξb(c)\Xi_{b(c)} and Ξb(c)â€Č\Xi'_{b(c)} baryons to the light spin-- 1/2, Ξ\Xi and ÎŁ\Sigma baryons are investigated in the framework of the light cone QCD sum rules. In particular, using the most general form of the interpolating currents for the heavy baryons as well as the distribution amplitudes of the Ξ\Xi and ÎŁ\Sigma baryons, we calculate all form factors entering the matrix elements of the corresponding effective Hamiltonians in full QCD. Having calculated the responsible form factors, we evaluate the decay rates and branching fractions of the related transitions.Comment: 30 Pages, 5 Figures and 18 Table

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore