12 research outputs found

    Atopic dermatitis phenotypes in childhood.

    Get PDF
    none6noBackground Atopic dermatitis (AD) is a chronic inflammatory skin disease and can be the first step of the atopic march. Objective In this retrospective study, we analysed the immunological and clinical patterns of AD in a group of children affected by the disease since their first years of life, in order to evaluate if and how these patterns can change over time, and to identify biomarkers that can possibly correlate with the clinical phenotype. Methods We enrolled Caucasian children with diagnosis of AD performed by a specialist on the basis of Hanifin and Rajka?s criteria and with a first clinical and laboratory evaluation before 5?years of age. Patients were divided in 2 groups: IgE-associated AD (with or without allergic respiratory diseases) and non-IgE-associated AD. Results Among 184 patients enrolled in this study, at the beginning 30/184 were classified as having non-IgE-associated AD, but during follow-up, at the median age of 36?months, 15 patients became allergic. All 15 patients who switched from the non-IgE to the IgE-associated form had a significantly earlier onset of AD than those who did not switch. Dust mite sensitization seem to be the best biomarker (OR 2.86) to predict the appearance of allergic respiratory diseases. Conclusion IgE-associated AD is more frequent in childhood than non-IgE-associated AD. These two phenotypes are different in the age of onset and in the remission patterns. In the first years of life, it is important to distinguish the different phenotypes in order to evaluate possible allergic related conditions.noneRicci G; Dondi A; Neri I; Ricci L; Patrizi A; Pession A.Ricci G; Dondi A; Neri I; Ricci L; Patrizi A; Pession A

    Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord

    Get PDF
    Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system (CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor pathogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water channel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS, they mediate astrocyte destruction by complement-dependent and by antibody-dependent cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from therapies involving type I interferons (I-IFN), NMO patients typically do not profit from such treatments. How is I-IFN involved in NMO pathogenesis? To address this question, we made gene expression profiles of spinal cords from Lewis rat models of experimental neuromyelitis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial, we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier was open. With this treatment regimen, we could amplify possible effects of the I-IFN induced genes on the transmigration of infiltrating cells through the blood brain barrier, and on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting beneficial effects of I-IFN.Funding Agencies|Austrian Science Fund [P25240-B24]; Austrian Ministry of Science, Research and Economy (BIGWIG-MS); Ministry of Education, Culture, Sports, Science and Technology of Japan; Alumni Association of Saitama Medical University</p
    corecore