885 research outputs found

    Corrigendum: Editorial: Immunological role of the maternal microbiome in pregnancy.

    Get PDF
    [This corrects the article DOI: 10.3389/fimmu.2021.703009.]

    EDITORIAL : IMMUNOLOGICAL ROLE OF THE MATERNAL MICROBIOME IN PREGNANCY

    Get PDF
    In this Research Topic of Frontiers in Mucosal Immunity we have focused on the immunological role of the maternal microbiome in pregnancy. We have invited leading researchers in the medical field to contribute articles that summarize the advancements in this broad and complex topic. The understanding of microbiota and its function has been steadily expanding and recent advancements in molecular biology and the Human Microbiome Project have allowed us to take a new biological look on the microbiota and the host interactions. In case of pregnancy, the host has to be separated in two compartments namely the mother and the fetus. Furthermore, pregnancy itself induces a number of changes, which include immunological, hormonal, and metabolic changes - necessary for the maternal adaptation process and fetal development. Undoubtedly, the maternal microbiome influences the course of pregnancy and fetal development beyond plain colonization. Therefore in pregnancy, we have to consider the potential implications of microbiota or it`s changes on both compartments (the maternal and fetal) and importantly visa-versa. We have therefore selected 10 review and original articles covering the important aspect of the field

    Synthetic PreImplantation Factor (sPIF) reduces inflammation and prevents preterm birth.

    Get PDF
    Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality and spontaneous PTB is a major contributor. The preceding inflammation/infection contributes not only to spontaneous PTB but is associated with neonatal morbidities including impaired brain development. Therefore, control of exaggerated immune response during pregnancy is an attractive strategy. A potential candidate is synthetic PreImplantation Factor (sPIF) as sPIF prevents inflammatory induced fetal loss and has neuroprotective properties. Here, we tested maternal sPIF prophylaxis in pregnant mice subjected to a lipopolysaccharides (LPS) insult, which results in PTB. Additionally, we evaluated sPIF effects in placental and microglial cell lines. Maternal sPIF application reduced the LPS induced PTB rate significantly. Consequently, sPIF reduced microglial activation (Iba-1 positive cells) and preserved neuronal migration (Cux-2 positive cells) in fetal brains. In fetal brain lysates sPIF decreased IL-6 and INFγ concentrations. In-vitro, sPIF reduced Iba1 and TNFα expression in microglial cells and reduced the expression of pro-apoptotic (Bad and Bax) and inflammatory (IL-6 and NLRP4) genes in placental cell lines. Together, maternal sPIF prophylaxis prevents PTB in part by controlling exaggerated immune response. Given the sPIF`FDA Fast Track approval in non-pregnant subjects, we envision sPIF therapy in pregnancy

    Inversion of Eddy Current Signals in a Nonuniform Probe Field

    Get PDF
    We present a simple analytical method for predicting the eddy current signal (ΔZ) produced by a surface flaw of known dimensions, when interrogated by a probe with spatially varying magnetic field. The model is easily parameterized, and we use it to construct inversion schemes which can extract overall flaw dimensions from multiposition, multifrequency measurements. Our method is a type of Born approximation, in which we assume that the probe’s magnetic field at the mouth of the flaw can be used as a boundary condition on the electromagnetic field solutions inside the flaw. To simplify the calculation we have chosen a “rectangular” 3-dimensional flaw geometry for our model. We describe experimental measurements made with a new broadband probe on a variety of flaws. This probe operates in a frequency range of 200 kHz to 20 MHz and was designed to make the multifrequency measurements necessary for inversion purposes. Since inversion requires knowledge of the probe’s magnetic field shape, we describe experimental methods which determine the interrogating field geometry for any eddy current probe

    Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response

    Get PDF
    Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1\u3b2 and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned

    In vitro human growth hormone increases human chorionic gonadotropin and progesterone secretion by human placenta at term: evidence of a modulatory role by opioids

    Get PDF
    We examined the in vitro effect of human growth hormone (hGH) on hormone placental production and the modulation by opioids of this function. Small placental fragments from 12 term placentas were incubated at 37 degrees C in a 95% air and 5% CO2 atmosphere for 4 h with various concentrations of hGH (1-1000 ng/ml) or naloxone (3-500 ng/ml). Both hGH and naloxone increased the concentrations of human chorionic gonadotropin (hCG) and progesterone in the media. The effect of the hGH was dose-dependent and statistically significant at 10 ng/ml, while naloxone was able to increase hCG and progesterone production only at the highest doses (250-500 ng/ml). The concomitant treatment with ineffective doses of naloxone and hGH was able to enhance hCG and progesterone secretion reaching levels similar to those obtained with the highest doses of hGH alone. High naloxone concentrations significantly decreased both hCG and progesterone secretion induced by high doses of hGH. This study confirms the relevance of growth hormone in sustaining placental endocrine activities and indicates an effect of opioids in modulating these function

    Autism Spectrum Traits in the Typical Population Predict Structure and Function in the Posterior Superior Temporal Sulcus

    Get PDF
    Autism spectrum disorders (ASDs) are typically characterized by impaired social interaction and communication, narrow interests, and repetitive behaviors. The heterogeneity in the severity of these characteristics across individuals with ASD has led some researchers to suggest that these disorders form a continuum which extends into the general, or “typical,” population, and there is growing evidence that the extent to which typical adults display autistic traits, as measured using the autism-spectrum quotient (AQ), predicts performance on behavioral tasks that are impaired in ASD. Here, we show that variation in autism spectrum traits is related to cortical structure and function within the typical population. Voxel-based morphometry showed that increased AQ scores were associated with decreased white matter volume in the posterior superior temporal sulcus (pSTS), a region important in processing socially relevant stimuli and associated with structural and functional impairments in ASD. In addition, AQ was correlated with the extent of cortical deactivation of an adjacent area of pSTS during a Stroop task relative to rest, reflecting variation in resting state function. The results provide evidence that autism spectrum characteristics are reflected in neural structure and function across the typical (non-ASD) population

    Simulation of structural phenomena in mixed-particle fluidized beds

    Full text link
    A statistical mechanical simulation was developed and used to predict the macroscopic and microscopic behavior of fluidized beds. In particular, the model was used to study structural phenomena in liquid fluidized beds that contain a distribution of particle sizes and/or densities. Bed structural phenomena, such as density-based and size-based segregation, classification, expansion, inversion, and solids dispersion have all been successfully simulated. Experimental data for the segregation of glass beads of different sizes and different densities agree well with predictions made from the simulation (without adjustable parameters). Classification and dispersion simulations also show good agreement with experimental data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34232/1/690440304_ftp.pd

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore