17,954 research outputs found

    3D electron density distributions in the solar corona during solar minima: assessment for more realistic solar wind modeling

    Get PDF
    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models are more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar regions, and we find that the density in tomographic and thermodynamic solutions varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We deduce that tomography offers reliable density distributions in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how they are magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus.Comment: 23 pages, 9 figure

    Ciprofloxacin enhances the stimulation of matrix metalloproteinase 3 expression by interleukin-1beta in human tendon-derived cells

    Get PDF
    To determine whether the fluoroquinolone antibiotic ciprofloxacin, which can cause tendon pain and rupture in a proportion of treated patients, affects the expression of matrix metalloproteinases (MMPs) in human tendon-derived cells in culture. Cell cultures were derived from 6 separate tendon explants, and were incubated in 6-well culture plates for 2 periods of 48 hours each, with ciprofloxacin (or DMSO in controls) and interleukin-1ß (IL-1ß), alone and in combination. Samples of supernatant medium from the second 48-hour incubation were assayed for MMPs 1, 2, and 3 by Western blotting. RNA was extracted from the cells and assayed for MMP messenger RNA (mRNA) by semiquantitative reverse transcription–polymerase chain reaction, with normalization for GAPDH mRNA. Unstimulated tendon cells expressed low or undetectable levels of MMP-1 and MMP-3, and substantial levels of MMP-2. IL-1ß induced a substantial output of both MMP-1 and MMP-3 into cell supernatants, reflecting increases (typically 100-fold) in MMP mRNA, but had only minor effects on MMP-2 expression. Ciprofloxacin had no detectable effect on MMP output in unstimulated cells. Preincubation with ciprofloxacin potentiated IL-1ß–stimulated MMP-3 output, reflecting a similar effect on MMP-3 mRNA expression. Ciprofloxacin also potentiated IL-1ß–stimulated MMP-1 mRNA expression, but did not potentiate the output of MMP-1, and had no significant effects on MMP-2 mRNA expression or output. Ciprofloxacin can selectively enhance MMP expression in tendon-derived cells. Such effects might compromise tendon microstructure and integrity

    Changes in gait during constant pace treadmill running.

    Get PDF
    Treadmills are often used by runners when weather conditions are adverse or a specific training effect is desired. Athletes might respond to fatigue differently when running on a treadmill compared with overground conditions, where pace is typically more variable. The purpose of this study was to measure changes in gait parameters over the course of a 10-km treadmill run. Fifteen male competitive runners ran at a constant pace for 10 km at 103% of season's best time on an instrumented treadmill with in-dwelling force plates, and data were analyzed at 5 distances. Kinematic data were derived from high-speed videography and results compared between the early and late stages. Before halfway, step length increased and cadence decreased, whereas during the latter stages, there were significant decreases in impulse and maximum force. Contact time decreased and flight time increased continually, but otherwise most gait variables did not change. The changes in contact and flight times suggested that athletes altered their gait so that more time was spent airborne to allow the treadmill to pass under them. In general, however, the runners maintained their techniques throughout the run. Constant pace treadmill running might therefore be useful with the aim of running for a particular distance and speed with a consistent technique unaffected by factors such as gradient or fatigue. However, the increase in flight time might have aided the runners because of the nature of treadmill running, and athletes and coaches should note that this training effect is impractical during overground running

    Advancing In Situ Modeling of ICMEs: New Techniques for New Observations

    Full text link
    It is generally known that multi-spacecraft observations of interplanetary coronal mass ejections (ICMEs) more clearly reveal their three-dimensional structure than do observations made by a single spacecraft. The launch of the STEREO twin observatories in October 2006 has greatly increased the number of multipoint studies of ICMEs in the literature, but this field is still in its infancy. To date, most studies continue to use on flux rope models that rely on single track observations through a vast, multi-faceted structure, which oversimplifies the problem and often hinders interpretation of the large-scale geometry, especially for cases in which one spacecraft observes a flux rope, while another does not. In order to tackle these complex problems, new modeling techniques are required. We describe these new techniques and analyze two ICMEs observed at the twin STEREO spacecraft on 22-23 May 2007, when the spacecraft were separated by ~8 degrees. We find a combination of non-force-free flux rope multi-spacecraft modeling, together with a new non-flux rope ICME plasma flow deflection model, better constrains the large-scale structure of these ICMEs. We also introduce a new spatial mapping technique that allows us to put multispacecraft observations and the new ICME model results in context with the convecting solar wind. What is distinctly different about this analysis is that it reveals aspects of ICME geometry and dynamics in a far more visually intuitive way than previously accomplished. In the case of the 22-23 May ICMEs, the analysis facilitates a more physical understanding of ICME large-scale structure, the location and geometry of flux rope sub-structures within these ICMEs, and their dynamic interaction with the ambient solar wind

    A novel metric for coronal MHD models

    Get PDF
    [1] In the interest of quantitatively assessing the capabilities of coronal MHD models, we have developed a metric that compares the structures of the white light corona observed with SOHO LASCO C2 to model predictions. The MAS model is compared to C2 observations from two Carrington rotations during solar cycle 23, CR1913 and CR1984, which were near the minimum and maximum of solar activity, respectively, for three radial heights, 2.5 R⊙, 3.0 R⊙, and 4.5 R⊙. In addition to simulated polarization brightness images, we create a synthetic image based on the field topology along the line of sight in the model. This open-closed brightness is also compared to LASCO C2 after renormalization. In general, the model\u27s magnetic structure is a closer match to observed coronal structures than the model\u27s density structure. This is expected from the simplified energy equations used in current global corona MHD models

    Free and fragmenting filling length

    Get PDF
    The filling length of an edge-circuit η in the Cayley 2-complex of a finite presentation of a group is the minimal integer length L such that there is a combinatorial null-homotopy of η down to a base point through loops of length at most L. We introduce similar notions in which the full-homotopy is not required to fix a base point, and in which the contracting loop is allowed to bifurcate. We exhibit a group in which the resulting filling invariants exhibit dramatically different behaviour to the standard notion of filling length. We also define the corresponding filling invariants for Riemannian manifolds and translate our results to this setting

    Measurements of total alkalinity and inorganic dissolved carbon in the Atlantic Ocean and adjacent Southern Ocean between 2008 and 2010

    Get PDF
    Water column dissolved inorganic carbon and total alkalinity were measured during five hydrographic sections in the Atlantic Ocean and Drake Passage. The work was funded through the Strategic Funding Initiative of the UK's Oceans2025 programme, which ran from 2007 to 2012. The aims of this programme were to establish the regional budgets of natural and anthropogenic carbon in the North Atlantic, the South Atlantic, and the Atlantic sector of the Southern Ocean, as well as the rates of change of these budgets. This paper describes in detail the dissolved inorganic carbon and total alkalinity data collected along east–west sections at 47° N to 60° N, 24.5° N, and 24° S in the Atlantic and across two Drake Passage sections. Other hydrographic and biogeochemical parameters were measured during these sections, and relevant standard operating procedures are mentioned here. Over 95% of dissolved inorganic carbon and total alkalinity samples taken during the 24.5° N, 24° S, and the Drake Passage sections were analysed onboard and subjected to a first-level quality control addressing technical and analytical issues. Samples taken along 47° N to 60° N were analysed and subjected to quality control back in the laboratory. Complete post-cruise second-level quality control was performed using cross-over analysis with historical data in the vicinity of measurements, and data were submitted to the CLIVAR and Carbon Hydrographic Data Office (CCHDO), the Carbon Dioxide Information Analysis Center (CDIAC) and and will be included in the Global Ocean Data Analyses Project, version 2 (GLODAP 2), the upcoming update of Key et al. (2004)

    In search of dying radio sources in the local universe

    Full text link
    Up till now very few dying sources were known, presumably because the dying phase is short at centimeter wavelengths. We therefore have tried to improve the statistics on sources that have ceased to be active, or are intermittently active. The latter sources would partly consist of a fossil radio plasma left over from an earlier phase of activity, plus a recently restarted core and radio jets. Improving the statistics of dying sources will give us a better handle on the evolution of radio sources, in particular the frequency and time scales of radio activity. We have used the WENSS and NVSS surveys, in order to find sources with steep spectral indices, associated with nearby elliptical galaxies. In the cross correlation we presently used only unresolved sources, with flux densities at 1.4 GHz larger than 10 mJy. The eleven candidates thus obtained were observed with the VLA in various configurations, in order to confirm the steepness of the spectra, and to check whether active structures like flat-spectrum cores and jets are present, perhaps at low levels. We estimated the duration of the active and relic phases by modelling the integrated radio spectra using the standard models of spectral evolution. We have found six dying sources and three restarted sources, while the remaining two candidates remain unresolved also with the new VLA data and may be Compact Steep Spectrum sources, with an unusually steep spectrum. The typical age of the active phase, as derived by spectral fits, is in the range 10^7 - 10^8 years. For our sample of dying sources, the age of the relic phase is on average shorter by an order of magnitude than the active phase.Comment: 21 pages, 17 figures, accepted by A&A. For a version with high quality figures, see http://erg.ca.astro.it/preprints/dying2007

    Simulating quantum-optical phenomena with cold atoms in optical lattices

    Get PDF
    We propose a scheme involving cold atoms trapped in optical lattices to observe different phenomena traditionally linked to quantum-optical systems. The basic idea consists of connecting the trapped atomic state to a non-trapped state through a Raman scheme. The coupling between these two types of atoms (trapped and free) turns out to be similar to that describing light-matter interaction within the rotating-wave approximation, the role of matter and photons being played by the trapped and free atoms, respectively. We explain in particular how to observe phenomena arising from the collective spontaneous emission of atomic and harmonic oscillator samples such as superradiance and directional emission. We also show how the same setup can simulate Bose-Hubbard Hamiltonians with extended hopping as well as Ising models with long-range interactions. We believe that this system can be realized with state of the art technology
    corecore