245 research outputs found
The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development
Brassica campestris Male Fertility 2 (BcMF2) is a putative polygalacturonase (PG) gene previously isolated from the flower bud of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis). This gene was found to be expressed specifically in tapetum and pollen after the tetrad stage of anther development. Antisense RNA technology was used to study the function of BcMF2 in Chinese cabbage. Scanning and transmission electron microscopy revealed that there were deformities in the transgenic mature pollen grains such as abnormal location of germinal furrows. In addition, the homogeneous pectic exintine layer facing the exterior seemed to be overdeveloped and predominantly occupied the intine, thus reversing the normal proportional distribution of the internal endintine layer and the external exintine layer. Since it is a continuation of the intine layer, the pollen tube wall could not grow normally. This resulted in the formation of a balloon-like swelling structure in the pollen tube tip in nearly 80% of the transgenic pollen grains. Premature degradation of tapetum was also found in these transgenic plants, which displayed decreased expression of the BcMF2 gene. BcMF2 might therefore encode a new PG with an important role in pollen wall development, possibly via regulation of pectin's dynamic metabolism
A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks
This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST),
Pakistan, and the Higher Education Commission, Pakistan
Prospects and Bottlenecks of Reciprocal Partnerships Between the Private and Humanitarian Sectors in Cash Transfer Programming for Humanitarian Response
As an alternative to commodity-based programming (in-kind aid), Cash Transfer Programming is attracting both humanitarian organizations' and institutional donors' attention. Unlike in-kind aid, Cash Transfer Programming transfers purchasing power directly to beneficiaries in the form of currency or vouchers for them to obtain goods and/or services directly from the local market. In distributing currency to beneficiaries, the private sector, especially financial service providers, plays a prominent role, due to the humanitarian sector's limited relevant resources. The present work unveils challenges for the private and humanitarian sectors, which hinder implementing Cash Transfer Programming. Based on primary and secondary qualitative data, the paper presents the main characteristics and the mechanisms of Cash Transfer Programming to explore how the private sector is involved with Cash Transfer Programming. Then, this study presents bottlenecks of reciprocal relationships between financial service providers and humanitarian organizations in Cash Transfer Programming
Recommended from our members
Strategic Technology Switching under Risk Aversion and Uncertainty
Firms devising green investment strategies within a deregulated environment must take into account not only economic and technological uncertainty, but also strategic interactions due to competition. Also, further complicating green investment decisions is the fact that firms are likely to exhibit risk aversion, since alternative energy technologies entail risk that cannot be diversified. Therefore, we develop a utility-based, real options framework for pre-emptive and non-pre-emptive competition in order to analyse how economic and technological uncertainty interact with risk aversion to impact the adoption of an existing technology in the light of uncertainty over the arrival of an improved version. We confirm that greater risk aversion delays investment and show that technological uncertainty accelerates the follower’s entry, delays the entry of the pre-emptive leader, and, intriguingly, does not affect the non-pre-emptive leader’s investment decision. Also, we show how the relative loss in the leader’s value due to the follower’s entry is affected by economic and technological uncertainty as well as risk aversion, and how the risk of pre-emption under increasing economic uncertainty raises the value of direct investment in the new technology relative to stepwise investment
Evolutionary development of the plant and spore wall
The article provides an overview of the development and structure of spore and pollen walls in the major plant groups and summarises progress in our understanding of the molecular genetics underpinning spore/pollen evolution and development
Angiogenesis gene expression in murine endothelial cells during post-pneumonectomy lung growth
Although blood vessel growth occurs readily in the systemic bronchial circulation, angiogenesis in the pulmonary circulation is rare. Compensatory lung growth after pneumonectomy is an experimental model with presumed alveolar capillary angiogenesis. To investigate the genes participating in murine neoalveolarization, we studied the expression of angiogenesis genes in lung endothelial cells. After left pneumonectomy, the remaining right lung was examined on days 3, 6, 14 and 21days after surgery and compared to both no surgery and sham thoracotomy controls. The lungs were enzymatically digested and CD31+ endothelial cells were isolated using flow cytometry cell sorting. The transcriptional profile of the CD31+ endothelial cells was assessed using quantitative real-time polymerase chain reaction (PCR) arrays. Focusing on 84 angiogenesis-associated genes, we identified 22 genes with greater than 4-fold regulation and significantly enhanced transcription (p <.05) within 21 days of pneumonectomy. Cluster analysis of the 22 genes indicated that changes in gene expression did not occur in a single phase, but in at least four waves of gene expression: a wave demonstrating decreased gene expression more than 3 days after pneumonectomy and 3 sequential waves of increased expression on days 6, 14, and 21 after pneumonectomy. These findings indicate that a network of gene interactions contributes to angiogenesis during compensatory lung growth
BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus
7365AB, a recessive genetic male sterility system, is controlled by BnMs3 in Brassica napus, which encodes a Tic40 protein required for tapetum development. However, the role of BnMs3 in rapeseed anther development is still largely unclear. In this research, cytological analysis revealed that anther development of a Bnms3 mutant has defects in the transition of the tapetum to the secretory type, callose degradation, and pollen-wall formation. A total of 76 down-regulated unigenes in the Bnms3 mutant, several of which are associated with tapetum development, callose degeneration, and pollen development, were isolated by suppression subtractive hybridization combined with a macroarray analysis. Reverse genetics was applied by means of Arabidopsis insertional mutant lines to characterize the function of these unigenes and revealed that MSR02 is only required for transport of sporopollenin precursors through the plasma membrane of the tapetum. The real-time PCR data have further verified that BnMs3 plays a primary role in tapetal differentiation by affecting the expression of a few key transcription factors, participates in tapetal degradation by modulating the expression of cysteine protease genes, and influences microspore separation by manipulating the expression of BnA6 and BnMSR66 related to callose degradation and of BnQRT1 and BnQRT3 required for the primary cell-wall degradation of the pollen mother cell. Moreover, BnMs3 takes part in pollen-wall formation by affecting the expression of a series of genes involved in biosynthesis and transport of sporopollenin precursors. All of the above results suggest that BnMs3 participates in tapetum development, microspore release, and pollen-wall formation in B. napus
- …