809 research outputs found

    The gradient of potential vorticity, quaternions and an orthonormal frame for fluid particles

    Full text link
    The gradient of potential vorticity (PV) is an important quantity because of the way PV (denoted as qq) tends to accumulate locally in the oceans and atmospheres. Recent analysis by the authors has shown that the vector quantity \bdB = \bnabla q\times \bnabla\theta for the three-dimensional incompressible rotating Euler equations evolves according to the same stretching equation as for \bom the vorticity and \bB, the magnetic field in magnetohydrodynamics (MHD). The \bdB-vector therefore acts like the vorticity \bom in Euler's equations and the \bB-field in MHD. For example, it allows various analogies, such as stretching dynamics, helicity, superhelicity and cross helicity. In addition, using quaternionic analysis, the dynamics of the \bdB-vector naturally allow the construction of an orthonormal frame attached to fluid particles\,; this is designated as a quaternion frame. The alignment dynamics of this frame are particularly relevant to the three-axis rotations that particles undergo as they traverse regions of a flow when the PV gradient \bnabla q is large.Comment: Dedicated to Raymond Hide on the occasion of his 80th birthda

    Building the field of health policy and systems research: framing the questions.

    Get PDF
    In the first of a series of articles addressing the current challenges and opportunities for the development of Health Policy & Systems Research (HPSR), Kabir Sheikh and colleagues lay out the main questions vexing the field

    Repeated evolution of self-compatibility for reproductive assurance

    Get PDF
    Sexual reproduction in eukaryotes requires the fusion of two compatible gametes of opposite sexes or mating types. To meet the challenge of finding a mating partner with compatible gametes evolutionary mechanisms such as hermaphroditism and self-fertilisation have repeatedly evolved. Combining insight from comparative genomics, computer simulations and experimental evolution in fission yeast, we shed light on the conditions promoting separate mating types or self-compatibility by mating-type switching. Analogous to multiple independent transitions between switchers and non-switchers in natural populations mediated by structural genomic changes, novel switching genotypes were readily evolving under selection in experimental populations. Detailed fitness measurements accompanied by computer simulations show the benefits and costs of switching during sexual and asexual reproduction governing the occurrence of both strategies in nature. Our findings illuminate the trade-off between the benefits of reproductive assurance and its fitness costs under benign conditions governing the evolution of self-compatibility

    Imaging Magnetic Focusing of Coherent Electron Waves

    Full text link
    The magnetic focusing of electrons has proven its utility in fundamental studies of electron transport. Here we report the direct imaging of magnetic focusing of electron waves, specifically in a two-dimensional electron gas (2DEG). We see the semicircular trajectories of electrons as they bounce along a boundary in the 2DEG, as well as fringes showing the coherent nature of the electron waves. Imaging flow in open systems is made possible by a cooled scanning probe microscope. Remarkable agreement between experiment and theory demonstrates our ability to see these trajectories and to use this system as an interferometer. We image branched electron flow as well as the interference of electron waves. This technique can visualize the motion of electron waves between two points in an open system, providing a straightforward way to study systems that may be useful for quantum information processing and spintronics

    Using fMRI Brain Activation to Identify Cognitive States Associated with Perception of Tools and Dwellings

    Get PDF
    Previous studies have succeeded in identifying the cognitive state corresponding to the perception of a set of depicted categories, such as tools, by analyzing the accompanying pattern of brain activity, measured with fMRI. The current research focused on identifying the cognitive state associated with a 4s viewing of an individual line drawing (1 of 10 familiar objects, 5 tools and 5 dwellings, such as a hammer or a castle). Here we demonstrate the ability to reliably (1) identify which of the 10 drawings a participant was viewing, based on that participant's characteristic whole-brain neural activation patterns, excluding visual areas; (2) identify the category of the object with even higher accuracy, based on that participant's activation; and (3) identify, for the first time, both individual objects and the category of the object the participant was viewing, based only on other participants' activation patterns. The voxels important for category identification were located similarly across participants, and distributed throughout the cortex, focused in ventral temporal perceptual areas but also including more frontal association areas (and somewhat left-lateralized). These findings indicate the presence of stable, distributed, communal, and identifiable neural states corresponding to object concepts

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Stability of the Neurotensin Receptor NTS1 Free in Detergent Solution and Immobilized to Affinity Resin

    Get PDF
    Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1.To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3)H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein.Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter
    corecore