9,486 research outputs found

    Spectrum formation in superluminous supernovae (Type I)

    Get PDF
    The near-maximum spectra of most superluminous supernovae (SLSNe) that are not dominated by interaction with a H-rich circum-stellar medium (SLSN-I) are characterized by a blue spectral peak and a series of absorption lines which have been identified as O II. SN 2011kl, associated with the ultra-long gamma-ray burst GRB111209A, also had a blue peak but a featureless optical/ultraviolet (UV) spectrum. Radiation transport methods are used to show that the spectra (not including SN 2007bi, which has a redder spectrum at peak, like ordinary SNe Ic) can be explained by a rather steep density distribution of the ejecta, whose composition appears to be typical of carbon–oxygen cores of massive stars which can have low metal content. If the photospheric velocity is ∼10 000–15 000 km s−1, several lines form in the UV. O II lines, however, arise from very highly excited lower levels, which require significant departures from local thermodynamic equilibrium to be populated. These SLSNe are not thought to be powered primarily by 56Ni decay. An appealing scenario is that they are energized by X-rays from the shock driven by a magnetar wind into the SN ejecta. The apparent lack of evolution of line velocity with time that characterizes SLSNe up to about maximum is another argument in favour of the magnetar scenario. The smooth UV continuum of SN 2011kl requires higher ejecta velocities (∼20 000 km s−1): line blanketing leads to an almost featureless spectrum. Helium is observed in some SLSNe after maximum. The high-ionization near-maximum implies that both He and H may be present but not observed at early times. The spectroscopic classification of SLSNe should probably reflect that of SNe Ib/c. Extensive time coverage is required for an accurate classification

    Developing and Diagnosing Climate Change Indicators of Regional Aerosol Optical Properties

    Get PDF
    Given the importance of aerosol particles to radiative transfer via aerosol-radiation interactions, a methodology for tracking and diagnosing causes of temporal changes in regional-scale aerosol populations is illustrated. The aerosol optical properties tracked include estimates of total columnar burden (aerosol optical depth, AOD), dominant size mode (ngstrm exponent, AE), and relative magnitude of radiation scattering versus absorption (single scattering albedo, SSA), along with metrics of the structure of the spatial field of these properties. Over well-defined regions of North America, there are generally negative temporal trends in mean and extreme AOD, and SSA. These are consistent with lower aerosol burdens and transition towards a relatively absorbing aerosol, driven primarily by declining sulfur dioxide emissions. Conversely, more remote regions are characterized by increasing mean and extreme AOD that is attributed to increased local wildfire emissions and long-range (transcontinental) transport. Regional and national reductions in anthropogenic emissions of aerosol precursors are leading to declining spatial autocorrelation in the aerosol fields and increased importance of local anthropogenic emissions in dictating aerosol burdens. However, synoptic types associated with high aerosol burdens are intensifying (becoming more warm and humid), and thus changes in synoptic meteorology may be offsetting aerosol burden reductions associated with emissions legislation

    National inventory of emergency departments in Singapore

    Get PDF
    Background: Emergency departments (EDs) are the basic units of emergency care. We performed a national inventory of all Singapore EDs and describe their characteristics and capabilities. Methods: Singapore EDs accessible to the general public 24/7 were surveyed using the National ED Inventories instrument ( http://www.emnet-nedi.org). ED staff members were asked about ED characteristics with reference to calendar year 2007. Results: Fourteen EDs participated (100% response). All EDs were located in hospitals, and most (92%) were independent departments. One was a psychiatric ED; the rest were general EDs. Among general EDs, all had a contiguous layout, with medical and surgical care provided in one area. All but two EDs saw both adults and children; one ED was adult-only, and the other saw only children. Six were in the public sector and seven in private health-care institutions, with public EDs seeing the majority (78%) of ED patients. Each private ED had an annual patient census of 60,000. They received 98% of ambulances and had an inpatient admission rate of 30%. Two public EDs reported being overcapacity; no private EDs did. For both public and private EDs, availability of consultant resources in EDs was high, while technological resources varied. Conclusion: Characteristics and capabilities of Singapore EDs varied and were largely dependent on whether they are in public or private hospitals. This initial inventory establishes a benchmark to further monitor the development of emergency care in Singapore

    Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains

    Get PDF
    The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel ``meta-polycentric'' functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function

    The <i>Plasmodium</i> eukaryotic initiation factor-2α kinase IK2 controls the latency of sporozoites in the mosquito salivary glands

    Get PDF
    Sporozoites, the invasive form of malaria parasites transmitted by mosquitoes, are quiescent while in the insect salivary glands. Sporozoites only differentiate inside of the hepatocytes of the mammalian host. We show that sporozoite latency is an active process controlled by a eukaryotic initiation factor-2α (eIF2α) kinase (IK2) and a phosphatase. IK2 activity is dominant in salivary gland sporozoites, leading to an inhibition of translation and accumulation of stalled mRNAs into granules. When sporozoites are injected into the mammalian host, an eIF2α phosphatase removes the PO4 from eIF2α-P, and the repression of translation is alleviated to permit their transformation into liver stages. In IK2 knockout sporozoites, eIF2α is not phosphorylated and the parasites transform prematurely into liver stages and lose their infectivity. Thus, to complete their life cycle, Plasmodium sporozoites exploit the mechanism that regulates stress responses in eukaryotic cells

    Stochastic theory of non-equilibrium wetting

    Full text link
    We study a Langevin equation describing non-equilibrium depinning and wetting transitions. Attention is focused on short-ranged attractive substrate-interface potentials. We confirm the existence of first order depinning transitions, in the temperature-chemical potential diagram, and a tricritical point beyond which the transition becomes a non-equilibrium complete wetting transition. The coexistence of pinned and depinned interfaces occurs over a finite area, in line with other non-equilibrium systems that exhibit first order transitions. In addition, we find two types of phase coexistence, one of which is characterized by spatio-temporal intermittency (STI). A finite size analysis of the depinning time is used to characterize the different coexisting regimes. Finally, a stationary distribution of characteristic triangles or facets was shown to be responsible for the structure of the STI phase.Comment: To appear in Europhys. Lett. // 3 figure

    Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with M~0.9 M_sun

    Full text link
    Type Ia supernovae (SNe Ia) are thought to result from thermonuclear explosions of carbon-oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991-bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to an underluminous explosion, though at the expense of requiring a single common-envelope phase, and component masses of ~0.9 M_sun. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. While mass ratios can be slightly less than one and still produce an underluminous event, the masses have to be in the range 0.83-0.9 M_sun.Comment: Accepted to Natur

    Diversity of supernovae Ia determined using equivalent widths of Si II 4000

    Full text link
    Spectroscopic and photometric properties of low and high-z supernovae Ia (SNe Ia) have been analyzed in order to achieve a better understanding of their diversity and to identify possible SN Ia sub-types. We use wavelet transformed spectra in which one can easily measure spectral features. We investigate the \ion{Si}{II} 4000 equivalent width (EW_w\lbrace\ion{Si}{II}\rbrace). The ability and, especially, the ease in extending the method to SNe at high-zz is demonstrated. We applied the method to 110 SNe Ia and found correlations between EW_w\lbrace\ion{Si}{II}\rbrace and parameters related to the light-curve shape for 88 supernovae with available photometry. No evidence for evolution of EW_w\lbrace\ion{Si}{II}\rbrace with redshift is seen. Three sub-classes of SNe Ia were confirmed using an independent cluster analysis with only light-curve shape, colour, and EW_w\lbrace\ion{Si}{II}\rbrace. SNe from high-zz samples seem to follow a similar grouping to nearby objects. The EW_w\lbrace\ion{Si}{II}\rbrace value measured on a single spectrum may point towards SN Ia sub-classification, avoiding the need for expansion velocity gradient calculations.Comment: 12 pages, 5 figure

    Genome-wide association study identifies loci associated with liability to alcohol and drug dependence that is associated with variability in reward-related ventral striatum activity in African- and European-Americans.

    Get PDF
    Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome-wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European-Americans (EA; 2927 cases) and 3132 African-Americans (AA: 1315 cases) participating in the family-based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome-wide significant (GWS; P &lt; 5E-08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion-deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans-ancestral meta-analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward-related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non-European samples with distinct patterns of substance use may lead to the identification of novel ancestry-specific genetic markers of risk

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions
    corecore