Abstract

Spectroscopic and photometric properties of low and high-z supernovae Ia (SNe Ia) have been analyzed in order to achieve a better understanding of their diversity and to identify possible SN Ia sub-types. We use wavelet transformed spectra in which one can easily measure spectral features. We investigate the \ion{Si}{II} 4000 equivalent width (EW_w\lbrace\ion{Si}{II}\rbrace). The ability and, especially, the ease in extending the method to SNe at high-zz is demonstrated. We applied the method to 110 SNe Ia and found correlations between EW_w\lbrace\ion{Si}{II}\rbrace and parameters related to the light-curve shape for 88 supernovae with available photometry. No evidence for evolution of EW_w\lbrace\ion{Si}{II}\rbrace with redshift is seen. Three sub-classes of SNe Ia were confirmed using an independent cluster analysis with only light-curve shape, colour, and EW_w\lbrace\ion{Si}{II}\rbrace. SNe from high-zz samples seem to follow a similar grouping to nearby objects. The EW_w\lbrace\ion{Si}{II}\rbrace value measured on a single spectrum may point towards SN Ia sub-classification, avoiding the need for expansion velocity gradient calculations.Comment: 12 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019