37 research outputs found

    A Year in the Life of the EU-CardioRNA COST Action: CA17129 Catalysing Transcriptomics Research in Cardiovascular Disease

    Get PDF
    The EU-CardioRNA Cooperation in Science and Technology (COST) Action is a European-wide consortium established in 2018 with 31 European country members and four associate member countries to build bridges between translational researchers from academia and industry who conduct research on non-coding RNAs, cardiovascular diseases and similar research areas. EU-CardioRNA comprises four core working groups (WG1-4). In the first year since its launch, EU-CardioRNA met biannually to exchange and discuss recent findings in related fields of scientific research, with scientific sessions broadly divided up according to WG. These meetings are also an opportunity to establish interdisciplinary discussion groups, brainstorm ideas and make plans to apply for joint research grants and conduct other scientific activities, including knowledge transfer. Following its launch in Brussels in 2018, three WG meetings have taken place. The first of these in Lisbon, Portugal, the second in Istanbul, Turkey, and the most recent in Maastricht, The Netherlands. Each meeting includes a scientific session from each WG. This meeting report briefly describes the highlights and key take-home messages from each WG session in this first successful year of the EU-CardioRNA COST Action. © 2020 by the authors

    Catalyzing Transcriptomics Research in Cardiovascular Disease : The CardioRNA COST Action CA17129

    Get PDF
    Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu)

    Application of Raman spectroscopy to real-time monitoring of CO2 capture at PACT pilot plant; Part 1: Plant operational data

    Get PDF
    Process analyzers for in-situ monitoring give advantages over the traditional analytical methods such as their fast response, multi-chemical information from a single measurement unit, minimal errors in sample handing and ability to use for process control. This study discusses the suitability of Raman spectroscopy as a process analytical tool for in-situ monitoring of CO2 capture using aqueous monoethanolamine (MEA) solution by presenting its performance during a 3-day test campaign at PACT pilot plant in Sheffield, UK. Two Raman immersion probes were installed on lean and rich streams for real time measurements. A multivariate regression model was used to determine the CO2 loading. The plant performance is described in detail by comparing the CO2 loading in each solvent stream at different process conditions. The study shows that the predicted CO2 loading recorded an acceptable agreement with the offline measurements. The findings from this study suggest that Raman Spectroscopy has the capability to follow changes in process variables and can be employed for real time monitoring and control of the CO2 capture process. In addition, these predictions can be used to optimize process parameters; to generate data to use as inputs for thermodynamic models, plant design and scale-up scenarios

    Business rules, constraints and simulation for enterprise governance

    No full text
    This paper aims to describe the main challenges to enterprise governance and proposes a hybrid approach based on business rules, constraints modelling and simulation. This approach can help to identify the high-level governance requirements and relate strategic, operational and IT governance aspects together. One of the important values of this approach is aligning governance knowledge in order to improve rules tracking between context and governance requirements thus catering for early identification of conflicts and other risk issues
    corecore