144 research outputs found

    Sleep continuity: a new metric to quantify disrupted hypnograms in non-sedated intensive care unit patients

    Get PDF
    Introduction: Sleep in intensive care unit (ICU) patients is severely altered. In a large proportion of critically ill patients, conventional sleep electroencephalogram (EEG) patterns are replaced by atypical sleep. On the other hand, some non-sedated patients can display usual sleep EEG patterns. In the latter, sleep is highly fragmented and disrupted and conventional rules may not be optimal. We sought to determine whether sleep continuity could be a useful metric to quantify the amount of sleep with recuperative function in critically ill patients with usual sleep EEG features. Methods: We retrospectively reanalyzed polysomnographies recorded in non-sedated critically ill patients requiring non-invasive ventilation (NIV) for acute hypercapnic respiratory failure. Using conventional rules, we built two-state hypnograms (sleep and wake) and identified all sleep episodes. The percentage of time spent in sleep bouts (10 and 30 minutes) was used to describe sleep continuity. In a first study, we compared these measures regarding good (NIV success) or poor outcome (NIV failure). In a second study performed on a different patient group, we compared these measurements during NIV and during spontaneous breathing. Results: While fragmentation indices were similar in the two groups, the percentage of total sleep time spent in short naps was higher and the percentage of sleep time spent in sleep bouts was lower in patients with successful NIV. The percentage of total sleep time spent in long naps was higher and the percentage of sleep time spent in sleep bouts was lower during NIV than during spontaneous breathing; the level of reproducibility of sleep continuity measures between scorers was high. Conclusions: Sleep continuity measurements could constitute a clinically relevant and reproducible assessment of sleep disruption in non-sedated ICU patients with usual sleep EEG

    Use of a gas-operated ventilator as a noninvasive bridging respiratory therapy in critically Ill COVID-19 patients in a middle-income country

    Get PDF
    During the COVID-19 pandemic, there was a notable undersupply of respiratory support devices, especially in low- and middle-income countries. As a result, many hospitals turned to alternative respiratory therapies, including the use of gas-operated ventilators (GOV). The aim of this study was to describe the use of GOV as a noninvasive bridging respiratory therapy in critically ill COVID-19 patients and to compare clinical outcomes achieved with this device to conventional respiratory therapies. Retrospective cohort analysis of critically ill COVID-19 patients during the first local wave of the pandemic. The final analysis included 204 patients grouped according to the type of respiratory therapy received in the first 24 h, as follows: conventional oxygen therapy (COT), n = 28 (14%); GOV, n = 72 (35%); noninvasive ventilation (NIV), n = 49 (24%); invasive mechanical ventilation (IMV), n = 55 (27%). In 72, GOV served as noninvasive bridging respiratory therapy in 42 (58%) of these patients. In the other 30 patients (42%), 20 (28%) presented clinical improvement and were discharged; 10 (14%) died. In the COT and GOV groups, 68% and 39%, respectively, progressed to intubation (P ≤ 0.001). Clinical outcomes in the GOV and NIV groups were similar (no statistically significant differences). GOV was successfully used as a noninvasive bridging respiratory therapy in more than half of patients. Clinical outcomes in the GOV group were comparable to those of the NIV group. These findings support the use of GOV as an emergency, noninvasive bridging respiratory therapy in medical crises when alternative approaches to the standard of care may be justifiable

    Results of noninvasive ventilation in very old patients

    Get PDF
    International audienceABSTRACT: BACKGROUND: Noninvasive ventilation (NIV) is frequently used for the management of acute respiratory failure (ARF) in very old patients (>80 years), often in the context of a do-not-intubate order (DNI). We aimed to determine its efficacy and long-term outcome. METHODS: Prospective cohort of all patients admitted to the medical ICU of a tertiary hospital during a 2-year period and managed using NIV. Characteristics of patients, context of NIV, and treatment intensity were compared for very old and younger patients. Six-month survival and functional status were assessed in very old patients. RESULTS: During the study period, 1,019 patients needed ventilatory support and 376 (37%) received NIV. Among them, 163 (16%) very old patients received ventilatory support with 60% of them managed using NIV compared with 32% of younger patients (p < 0.0001). Very old patients received NIV more frequently with DNI than in younger patients (40% vs. 8%). Such cases were associated with high mortality for both very old and younger patients. Hospital mortality was higher in very old than in younger patients but did not differ when NIV was used for cardiogenic pulmonary edema or acute-on-chronic respiratory failure (20% vs. 15%) and in postextubation (15% vs. 17%) out of a context of DNI. Six-month mortality was 51% in very old patients, 67% for DNI patients, and 77% in case of NIV failure and endotracheal intubation. Of the 30 hospital survivors, 22 lived at home and 13 remained independent for activities of daily living. CONCLUSIONS: Very old patients managed using NIV have an overall satisfactory 6-month survival and functional status, except for endotracheal intubation after NIV failure

    Asymmetric response of forest and grassy biomes to climate variability across the African Humid Period : influenced by anthropogenic disturbance?

    Get PDF
    A comprehensive understanding of the relationship between land cover, climate change and disturbance dynamics is needed to inform scenarios of vegetation change on the African continent. Although significant advances have been made, large uncertainties exist in projections of future biodiversity and ecosystem change for the world's largest tropical landmass. To better illustrate the effects of climate–disturbance–ecosystem interactions on continental‐scale vegetation change, we apply a novel statistical multivariate envelope approach to subfossil pollen data and climate model outputs (TraCE‐21ka). We target paleoenvironmental records across continental Africa, from the African Humid Period (AHP: ca 14 700–5500 yr BP) – an interval of spatially and temporally variable hydroclimatic conditions – until recent times, to improve our understanding of overarching vegetation trends and to compare changes between forest and grassy biomes (savanna and grassland). Our results suggest that although climate variability was the dominant driver of change, forest and grassy biomes responded asymmetrically: 1) the climatic envelope of grassy biomes expanded, or persisted in increasingly diverse climatic conditions, during the second half of the AHP whilst that of forest did not; 2) forest retreat occurred much more slowly during the mid to late Holocene compared to the early AHP forest expansion; and 3) as forest and grassy biomes diverged during the second half of the AHP, their ecological relationship (envelope overlap) fundamentally changed. Based on these asymmetries and associated changes in human land use, we propose and discuss three hypotheses about the influence of anthropogenic disturbance on continental‐scale vegetation change

    Implications of early respiratory support strategies on disease progression in critical COVID-19: a matched subanalysis of the prospective RISC-19-ICU cohort.

    Get PDF
    Uncertainty about the optimal respiratory support strategies in critically ill COVID-19 patients is widespread. While the risks and benefits of noninvasive techniques versus early invasive mechanical ventilation (IMV) are intensely debated, actual evidence is lacking. We sought to assess the risks and benefits of different respiratory support strategies, employed in intensive care units during the first months of the COVID-19 pandemic on intubation and intensive care unit (ICU) mortality rates. Subanalysis of a prospective, multinational registry of critically ill COVID-19 patients. Patients were subclassified into standard oxygen therapy ≥10 L/min (SOT), high-flow oxygen therapy (HFNC), noninvasive positive-pressure ventilation (NIV), and early IMV, according to the respiratory support strategy employed at the day of admission to ICU. Propensity score matching was performed to ensure comparability between groups. Initially, 1421 patients were assessed for possible study inclusion. Of these, 351 patients (85 SOT, 87 HFNC, 87 NIV, and 92 IMV) remained eligible for full analysis after propensity score matching. 55% of patients initially receiving noninvasive respiratory support required IMV. The intubation rate was lower in patients initially ventilated with HFNC and NIV compared to those who received SOT (SOT: 64%, HFNC: 52%, NIV: 49%, p = 0.025). Compared to the other respiratory support strategies, NIV was associated with a higher overall ICU mortality (SOT: 18%, HFNC: 20%, NIV: 37%, IMV: 25%, p = 0.016). In this cohort of critically ill patients with COVID-19, a trial of HFNC appeared to be the most balanced initial respiratory support strategy, given the reduced intubation rate and comparable ICU mortality rate. Nonetheless, considering the uncertainty and stress associated with the COVID-19 pandemic, SOT and early IMV represented safe initial respiratory support strategies. The presented findings, in agreement with classic ARDS literature, suggest that NIV should be avoided whenever possible due to the elevated ICU mortality risk

    X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients

    Get PDF
    Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project

    Get PDF
    Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection

    Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review

    Get PDF
    Sludge or waste activated sludge (WAS) generated from wastewater treatment plants may be considered a nuisance. It is a key source for secondary environmental contamination on account of the presence of diverse pollutants (polycyclic aromatic hydrocarbons, dioxins, furans, heavy metals, etc.). Innovative and cost-effective sludge treatment pathways are a prerequisite for the safe and environment-friendly disposal of WAS. This article delivers an assessment of the leading disposal (volume reduction) and energy recovery routes such as anaerobic digestion, incineration, pyrolysis, gasification and enhanced digestion using microbial fuel cell along with their comparative evaluation, to measure their suitability for different sludge compositions and resources availability. Furthermore, the authors shed light on the bio-refinery and resource recovery approaches to extract value added products and nutrients from WAS, and control options for metal elements and micro-pollutants in sewage sludge. Recovery of enzymes, bio-plastics, bio-pesticides, proteins and phosphorus are discussed as a means to visualize sludge as a potential opportunity instead of a nuisance
    corecore