770 research outputs found

    Parallel-to-serial biphase-data converter

    Get PDF
    Data converter produces a serial biphase output signal from parallel input data. Alternate bits are loaded into a shift register in complement form so that the bits appear at the end of the shift register in a true-complement form sequence

    On the Role of Disks in the Formation of Stellar Systems: A Numerical Parameter Study of Rapid Accretion

    Full text link
    We study rapidly accreting, gravitationally unstable disks with a series of global, three dimensional, numerical experiments using the code ORION. In this paper we conduct a numerical parameter study focused on protostellar disks, and show that one can predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the disk's accretion rate to its sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infall rate, and governed by gravitational torques generated by low-m spiral modes. We also confirm the existence of a maximum stable disk mass: disks that exceed ~50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.Comment: 16 pages, 12 figures, submitte

    The contribution of supernova remnants to the galactic cosmic ray spectrum

    Full text link
    The supernova paradigm for the origin of galactic cosmic rays has been deeply affected by the development of the non-linear theory of particle acceleration at shock waves. Here we discuss the implications of applying such theory to the calculation of the spectrum of cosmic rays at Earth as accelerated in supernova remnants and propagating in the Galaxy. The spectrum is calculated taking into account the dynamical reaction of the accelerated particles on the shock, the generation of magnetic turbulence which enhances the scattering near the shock, and the dynamical reaction of the amplified field on the plasma. Most important, the spectrum of cosmic rays at Earth is calculated taking into account the flux of particles escaping from upstream during the Sedov-Taylor phase and the adiabatically decompressed particles confined in the expanding shell and escaping at later times. We show how the spectrum obtained in this way is well described by a power law in momentum with spectral index close to -4, despite the concave shape of the instantaneous spectra of accelerated particles. On the other hand we also show how the shape of the spectrum is sensible to details of the acceleration process and environment which are and will probably remain very poorly known.Comment: 19 pages, 8 figures, published version (references updated

    Non-linear diffusive acceleration of heavy nuclei in supernova remnant shocks

    Full text link
    We describe a semi-analytical approach to non-linear diffusive shock acceleration in the case in which nuclei other than protons are also accelerated. The structure of the shock is determined by the complex interplay of all nuclei, and in turn this shock structure determines the spectra of all components. The magnetic field amplification upstream is described as due to streaming instability of all nuclear species. The amplified magnetic field is then taken into account for its dynamical feedback on the shock structure as well as in terms of the induced modification of the velocity of the scattering centers that enters the particle transport equation. The spectra of accelerated particles are steep enough to be compared with observed cosmic ray spectra only if the magnetic field is sufficiently amplified and the scattering centers have high speed in the frame of the background plasma. We discuss the implications of this generalized approach on the structure of the knee in the all-particle cosmic ray spectrum, which we interpret as due to an increasingly heavier chemical composition above 101510^{15}eV. The effects of a non trivial chemical composition at the sources on the gamma ray emission from a supernova remnant when gamma rays are of hadronic origin are also discussed.Comment: 23 pages, 5 figures, minor changes to reflect the published versio

    An adjustable law of motion for relativistic spherical shells

    Full text link
    A classical and a relativistic law of motion for an advancing shell are deduced applying the thin layer approximation. A new parameter connected with the quantity of absorbed matter in the expansion is introduced; this allows of matching theory and observation.Comment: 15 pages, 10 figures and article in press; Central European Journal of Physics 201

    Radiative transfer and the energy equation in SPH simulations of star formation

    Get PDF
    We introduce and test a new and highly efficient method for treating the thermal and radiative effects influencing the energy equation in SPH simulations of star formation. The method uses the density, temperature and gravitational potential of each particle to estimate a mean optical depth, which then regulates the particle's heating and cooling. The method captures -- at minimal computational cost -- the effects of (i) the rotational and vibrational degrees of freedom of H2, H2 dissociation, H0 ionisation, (ii) opacity changes due to ice mantle melting, sublimation of dust, molecular lines, H-, bound-free and free-free processes and electron scattering; (iv) external irradiation; and (v) thermal inertia. The new algorithm reproduces the results of previous authors and/or known analytic solutions. The computational cost is comparable to a standard SPH simulation with a simple barotropic equation of state. The method is easy to implement, can be applied to both particle- and grid-based codes, and handles optical depths 0<tau<10^{11}.Comment: Submitted to A&A, recommended for publicatio

    Hydrodynamic Simulation of Supernova Remnants Including Efficient Particle Acceleration

    Full text link
    A number of supernova remnants (SNRs) show nonthermal X-rays assumed to be synchrotron emission from shock accelerated TeV electrons. The existence of these TeV electrons strongly suggests that the shocks in SNRs are sources of galactic cosmic rays (CRs). In addition, there is convincing evidence from broad-band studies of individual SNRs and elsewhere that the particle acceleration process in SNRs can be efficient and nonlinear. If SNR shocks are efficient particle accelerators, the production of CRs impacts the thermal properties of the shock heated, X-ray emitting gas and the SNR evolution. We report on a technique that couples nonlinear diffusive shock acceleration, including the backreaction of the accelerated particles on the structure of the forward and reverse shocks, with a hydrodynamic simulation of SNR evolution. Compared to models which ignore CRs, the most important hydrodynamical effects of placing a significant fraction of shock energy into CRs are larger shock compression ratios and lower temperatures in the shocked gas. We compare our results, which use an approximate description of the acceleration process, with a more complete model where the full CR transport equations are solved (i.e., Berezhko et al., 2002), and find excellent agreement for the CR spectrum summed over the SNR lifetime and the evolving shock compression ratio. The importance of the coupling between particle acceleration and SNR dynamics for the interpretation of broad-band continuum and thermal X-ray observations is discussed.Comment: Accepted for publication in A & A; 14 pages including 11 figure

    A Chandra Observation of Supernova Remnant G350.1-0.3 and Its Central Compact Object

    Full text link
    We present a new Chandra observation of supernova remnant (SNR) G350.1-0.3. The high resolution X-ray data reveal previously unresolved filamentary structures and allow us to perform detailed spectroscopy in the diffuse regions of this SNR. Spectral analysis demonstrates that the region of brightest emission is dominated by hot, metal-rich ejecta while the ambient material along the perimeter of the ejecta region and throughout the remnant's western half is mostly low-temperature, shocked interstellar/circumstellar medium (ISM/CSM) with solar-type composition. The data reveal that the emission extends far to the west of the ejecta region and imply a lower limit of 6.6 pc on the diameter of the source (at a distance of 4.5 kpc). We show that G350.1-0.3 is likely in the free expansion (ejecta-dominated) stage and calculate an age of 600-1200 years. The derived relationship between the shock velocity and the electron/proton temperature ratio is found to be entirely consistent with that of other SNRs. We perform spectral fits on the X-ray source XMMU J172054.5-372652, a candidate central compact object (CCO), and find that its spectral properties fall within the typical range of other CCOs. We also present archival 24 um data of G350.1-0.3 taken with the Spitzer Space Telescope during the MIPSGAL galactic survey and find that the infrared and X-ray morphologies are well-correlated. These results help to explain this remnant's peculiar asymmetries and shed new light on its dynamics and evolution

    The kinematics and chemical stratification of the Type Ia supernova remnant 0519-69.0

    Full text link
    We present an analysis of the XMM-Newton and Chandra X-ray data of the young Type Ia supernova remnant 0519-69.0 in the Large Magellanic Cloud. We used data from both the Chandra ACIS and XMM-Newton EPIC-MOS instruments, and high resolution X-ray spectra obtained with the XMM-Newton Reflection Grating Spectrometer. The Chandra data show that there is a radial stratification of oxygen, intermediate mass elements and iron, with the emission from more massive elements more toward the center. Using a deprojection technique we measure a forward shock radius of 4.0(3) pc and a reverse shock radius of 2.7(4) pc. We took the observed stratification of the shocked ejecta into account in the modeling of the X-ray spectra with multi-component NEI models, with the components corresponding to layers dominated by one or two elements. An additional component was added in order to represent the ISM, which mostly contributed to the continuum emission. This model fits the data well, and was also employed to characterize the spectra of distinct regions extracted from the Chandra data. From our spectral analysis we find that the fractional masses of shocked ejecta for the most abundant elements are: M(O)=32%, M(Si/S)=7%/5%, M(Ar+Ca)=1%, and M(Fe) = 55%. From the continuum component we derive a circumstellar density of nH= 2.4(2)/cm^3. This density, together with the measurements of the forward and reverse shock radii suggest an age of 450+/-200 yr,somewhat lower than, but consistent with the estimate based on the optical light echo (600+/-200 yr). From the RGS spectra we measured a Doppler broadening of sigma=1873+/-50 km/s, from implying a forward shock velocity of vS = 2770+/-500 km/s. We discuss the results in the context of single degenerate explosion models, using semi-analytical and numerical modeling, and compare the characteristics of 0519-69.0 with those of other Type Ia supernova remnants.Comment: Astronomy and Astrophysics in press. This version is the A&A accepted version, which contains improved figures and an extended discussion sectio

    The Formation of Low-Mass Binary Star Systems Via Turbulent Fragmentation

    Full text link
    We characterize the infall rate onto protostellar systems forming in self-gravitating radiation-hydrodynamic simulations. Using two dimensionless parameters to determine disks' susceptability to gravitational fragmentation, we infer limits on protostellar system multiplicity and the mechanism of binary formation. We show that these parameters give robust predictions even in the case of marginally resolved protostellar disks. We find that protostellar systems with radiation feedback predominately form binaries via turbulent fragmentation, not disk instability, and we predict turbulent fragmentation is the dominant channel for binary formation for low-mass stars. We clearly demonstrate that systems forming in simulations including radiative feedback have fundamentally different parameters than those in purely hydrodynamic simulations.Comment: 11 pages, 10 figures, accepted to Ap
    corecore