267 research outputs found
A quantum computer using a trapped-ion spin molecule and microwave radiation
We propose a new design for a quantum information processor where qubits are
encoded into Hyperfine states of ions held in a linear array of individually
tailored microtraps and sitting in a spatially varying magnetic field. The
magnetic field gradient introduces spatially dependent qubit transition
frequencies and a type of spin-spin interaction between qubits. Single and
multi-qubit manipulation is achieved via resonant microwave pulses as in
liquid-NMR quantum computation while the qubit readout and reset is achieved
through trapped-ion fluorescence shelving techniques. By adjusting the
microtrap configurations we can tailor, in hardware, the qubit resonance
frequencies and coupling strengths. We show the system possesses a side-band
transition structure which does not scale with the size of the processor
allowing scalable frequency discrimination between qubits. By using large
magnetic field gradients, one can readout and reset the qubits in the ion chain
via frequency selective optical pulses avoiding the need for many tightly
focused laser beams for spatial qubit addressing.Comment: 7 pages, 2 figures. New references added, additional material on
quantum error correction and device tolerance
Quantum Gates and Memory using Microwave Dressed States
Trapped atomic ions have been successfully used for demonstrating basic
elements of universal quantum information processing (QIP). Nevertheless,
scaling up of these methods and techniques to achieve large scale universal
QIP, or more specialized quantum simulations remains challenging. The use of
easily controllable and stable microwave sources instead of complex laser
systems on the other hand promises to remove obstacles to scalability.
Important remaining drawbacks in this approach are the use of magnetic field
sensitive states, which shorten coherence times considerably, and the
requirement to create large stable magnetic field gradients. Here, we present
theoretically a novel approach based on dressing magnetic field sensitive
states with microwave fields which addresses both issues and permits fast
quantum logic. We experimentally demonstrate basic building blocks of this
scheme to show that these dressed states are long-lived and coherence times are
increased by more than two orders of magnitude compared to bare magnetic field
sensitive states. This changes decisively the prospect of microwave-driven ion
trap QIP and offers a new route to extend coherence times for all systems that
suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or
circuit-QED systems.Comment: 9 pages, 4 figure
Quantum gates using electronic and nuclear spins of Yb in a magnetic field gradient
An efficient scheme is proposed to carry out gate operations on an array of
trapped Yb ions, based on a previous proposal using both electronic and
nuclear degrees of freedom in a magnetic field gradient. For this purpose we
consider the Paschen-Back regime (strong magnetic field) and employ a
high-field approximation in this treatment. We show the possibility to suppress
the unwanted coupling between the electron spins by appropriately swapping
states between electronic and nuclear spins. The feasibility of generating the
required high magnetic field is discussed
Hydrodynamic journal bearing program Quarterly progress report no. 1, 29 May - 29 Jul. 1965
Test assembly design requirements for space power systems journal bearing
A dose ranging trial to optimize the dose of Rifampin in the treatment of tuberculosis
The study was funded by the EDCTP (European & Developing Countries Clinical Trials Partnership), NACCAP (Netherlands-African partnership for Capacity development and Clinical interventions Against Poverty-related diseases) and the Bill & Melinda Gates Foundation.Rationale: Rifampin at a dose of 10 mg/kg was introduced in 1971 based on pharmacokinetic, toxicity and cost considerations. Available data in mice and humans showed that an increase in dose may shorten the duration of tuberculosis treatment. Objectives: To evaluate the safety and tolerability, the pharmacokinetics and the extended early bactericidal activity of increasing doses of rifampin. Methods: Patients with drug-susceptible tuberculosis were enrolled into a control group of 8 patients receiving the standard dose of 10 mg/kg rifampin, followed by consecutive experimental groups with 15 patients each receiving rifampin 20 mg/kg, 25 mg/kg, 30 mg/kg and 35 mg/kg, respectively, for 14 days. In all patients isoniazid, pyrazinamide and ethambutol were added in standard doses for the second 7 days of treatment. Safety, pharmacokinetics of rifampin, and fall in bacterial load were assessed. Measurements and Main Results: Grade 1 and 2 adverse events were equally distributed between the five dose groups; there were 5 grade 3 events of which 1 was a possibly related hepatotoxicity. Areas under the time-concentration curves and peak serum concentrations of rifampin showed a more than proportional increase with dose. The daily fall in bacterial load over 14 days was 0.176, 0.168, 0.167, 0.265, and 0.261 log10CFU/ml sputum in the 10, 20, 25, 30 and 35 mg/kg groups respectively. Conclusions: Two weeks of rifampin up to 35 mg/kg was safe and well tolerated. There was a non-linear increase in exposure to rifampin without an apparent ceiling effect and a greater estimated fall in bacterial load in the higher dosing groups. Clinical trial registration available at www.clinicaltrials.gove, ID NCT01392911.PostprintPeer reviewe
Abundance of the Quorum-Sensing Factor Ax21 in Four Strains of Stenotrophomonas maltophilia Correlates with Mortality Rate in a New Zebrafish Model of Infection
Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence. Little is known about its pathogenesis and the genomic diversity exhibited by clinical isolates complicates the study of pathogenicity and virulence factors. Here, we present a strategy to identify such factors in new clinical isolates of S. maltophilia, incorporating an adult-zebrafish model of S. maltophilia infection to evaluate relative virulence coupled to 2D difference gel electrophoresis to explore underlying differences in protein expression. In this study we report upon three recent clinical isolates and use the collection strain ATCC13637 as a reference. The adult-zebrafish model shows discrimination capacity, i.e. from very low to very high mortality rates, with clinical symptoms very similar to those observed in natural S. maltophilia infections in fish. Strain virulence correlates with resistance to human serum, in agreement with previous studies in mouse and rat and therefore supporting zebrafish as a replacement model. Despite its clinical origin, the collection strain ATCC13637 showed obvious signs of attenuation in zebrafish, with null mortality. Multilocus-sequence-typing analysis revealed that the most virulent strains, UV74 and M30, exhibit the strongest genetic similitude. Differential proteomic analysis led to the identification of 38 proteins with significantly different abundance in the three clinical strains relative to the reference strain. Orthologs of several of these proteins have been already reported to have a role in pathogenesis, virulence or resistance mechanisms thus supporting our strategy. Proof of concept is further provided by protein Ax21, whose abundance is shown here to be directly proportional to mortality in the zebrafish infection model. Indeed, recent studies have demonstrated that this protein is a quorum-sensing-related virulence factor
Body surface area and baseline blood pressure predict subclinical anthracycline cardiotoxicity in women treated for early breast cancer.
BACKGROUND AND AIMS: Anthracyclines are highly effective chemotherapeutic agents which may cause long-term cardiac damage (chronic anthracycline cardiotoxicity) and heart failure. The pathogenesis of anthracycline cardiotoxicity remains incompletely understood and individual susceptibility difficult to predict. We sought clinical features which might contribute to improved risk assessment. METHODS: Subjects were women with early breast cancer, free of pre-existing cardiac disease. Left ventricular ejection fraction was measured using cardiovascular magnetic resonance before and >12 months after anthracycline-based chemotherapy (>3 months post-Trastuzumab). Variables associated with subclinical cardiotoxicity (defined as a fall in left ventricular ejection fraction of ≥5%) were identified by logistic regression. RESULTS: One hundred and sixty-five women (mean age 48.3 years at enrollment) completed the study 21.7 months [IQR 18.0-26.8] after starting chemotherapy. All received anthracyclines (98.8% epirubicin, cumulative dose 400 [300-450] mg/m2); 18% Trastuzumab. Baseline blood pressure was elevated (≥140/90mmHg, mean 147.3/86.1mmHg) in 18 subjects. Thirty-four subjects (20.7%) were identified with subclinical cardiotoxicity, independent predictors of which were the number of anthracycline cycles (odds ratio, OR 1.64 [1.17-2.30] per cycle), blood pressure ≥140/90mmHg (OR 5.36 [1.73-17.61]), body surface area (OR 2.08 [1.36-3.20] per standard deviation (0.16m2) increase), and Trastuzumab therapy (OR 3.35 [1.18-9.51]). The resultant predictive-model had an area under the receiver operating characteristics curve of 0.78 [0.70-0.86]. CONCLUSIONS: We found subclinical cardiotoxicity to be common even within this low risk cohort. Risk of cardiotoxicity was associated with modestly elevated baseline blood pressure-indicating that close attention should be paid to blood pressure in patients considered for anthracycline based chemotherapy. The association with higher body surface area suggests that indexing of anthracycline doses to surface area may not be appropriate for all, and points to the need for additional research in this area
2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.
S
Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex
The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders
Genetic associations between feed efficiency measured in a performance test station and performance of growing cattle in commercial beef herds
ABSTRACT: Interest in selection for improved feed efficiency is increasing, but before any steps are taken toward selecting for feed efficiency, correlations with other economically important traits must first be quantified. The objective of this study was to quantify the genetic associations between feed efficiency measured during performance testing and linear type traits, BW, live animal value, and carcass traits recorded in commercial herds. Feed efficiency data were available on 2,605 bulls from 1 performance test station. There were between 10,384 and 93,442 performance records on type traits, BW, animal value, or carcass traits from 17,225 commercial herds. (Co)variance components were estimated using linear mixed animal models. Genetic correlations between the muscular type traits in commercial animals and feed conversion ratio (−0.33 to −0.25), residual feed intake (RFI; −0.33 to −0.22), and residual BW gain (RG; 0.24 to 0.27) suggest that selection for improved feed efficiency should increase muscling. This is further evidenced by the genetic correlations between carcass conformation of commercial animals and feed conversion ratio (−0.46), RFI (−0.37), and residual BW gain (0.35) measured in performance-tested animals. Furthermore, the genetic correlations between RFI and both ultrasonic fat depth and carcass fat score (0.39 and 0.33, respectively) indicated that selection for improved RFI will result in leaner animals. It can be concluded from the genetic correlations estimated in this study that selection for feed efficiency will have no unfavorable effects on the performance traits measured in this study and will actually lead to an improvement in performance for some traits, such as muscularity, animal price, and carcass conformation. Conversely, this suggests that genetic selection for traits such as carcass quality, muscling traits, and animal value might also be indirectly selecting for more efficient animals
- …
