5,078 research outputs found
Translational regulation in mycobacteria and its implications for pathogenicity.
Protein synthesis is a fundamental requirement of all cells for survival and replication. To date, vast numbers of genetic and biochemical studies have been performed to address the mechanisms of translation and its regulation in Escherichia coli, but only a limited number of studies have investigated these processes in other bacteria, particularly in slow growing bacteria like Mycobacterium tuberculosis, the causative agent of human tuberculosis. In this Review, we highlight important differences in the translational machinery of M. tuberculosis compared with E. coli, specifically the presence of two additional proteins and subunit stabilizing elements such as the B9 bridge. We also consider the role of leaderless translation in the ability of M. tuberculosis to establish latent infection and look at the experimental evidence that translational regulatory mechanisms operate in mycobacteria during stress adaptation, particularly focussing on differences in toxin-antitoxin systems between E. coli and M. tuberculosis and on the role of tuneable translational fidelity in conferring phenotypic antibiotic resistance. Finally, we consider the implications of these differences in the context of the biological adaptation of M. tuberculosis and discuss how these regulatory mechanisms could aid in the development of novel therapeutics for tuberculosis
In vitro tissue microarrays for quick and efficient spheroid characterisation
Three-dimensional in vitro microphysiological cultures, such as spheroids and organoids, promise increased patient relevance and therapeutic predictivity compared to reductionist cell monolayers. However, high-throughput characterisation techniques for 3D models are currently limited to simplistic live/dead assays. By sectioning and staining in vitro microtissues researchers can examine their structure, detect DNA, RNA and protein targets and visualise them at the level of single cells. The morphological examination and immunochemistry staining for in vitro cultures has historically been done in a laborious manner involving testing one set of cultures at a time. We have developed a technology to rapidly screen spheroid phenotype and protein expression by arranging 66 spheroids in a gel array for paraffin-embedding, sectioning and immunohistochemsitry. The process is quick, mostly automatable and uses 11 times less reagents compared to conventional techniques. Here we showcase the capabilities of the technique in an array made up of 11 different cell lines stained in conventional H&E staining, as well as immunohistochemistry staining for estrogen (ER), progesterone (PR) human epidermal growth factor receptors (Her-2) and TP53. This new methodology can be used in optimising stem cell-based models of disease and development, for tissue engineering, safety screening and for efficacy screens in cancer research
Modular classes of skew algebroid relations
Skew algebroid is a natural generalization of the concept of Lie algebroid.
In this paper, for a skew algebroid E, its modular class mod(E) is defined in
the classical as well as in the supergeometric formulation. It is proved that
there is a homogeneous nowhere-vanishing 1-density on E* which is invariant
with respect to all Hamiltonian vector fields if and only if E is modular, i.e.
mod(E)=0. Further, relative modular class of a subalgebroid is introduced and
studied together with its application to holonomy, as well as modular class of
a skew algebroid relation. These notions provide, in particular, a unified
approach to the concepts of a modular class of a Lie algebroid morphism and
that of a Poisson map.Comment: 20 page
Lagrangian submanifolds and dynamics on Lie affgebroids
We introduce the notion of a symplectic Lie affgebroid and their Lagrangian
submanifolds in order to describe the Lagrangian (Hamiltonian) dynamics on a
Lie affgebroid in terms of this type of structures. Several examples are
discussed.Comment: 50 pages. Several sections update
Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings
The aim of this paper is to study the relationship between Hamiltonian
dynamics and constrained variational calculus. We describe both using the
notion of Lagrangian submanifolds of convenient symplectic manifolds and using
the so-called Tulczyjew's triples. The results are also extended to the case of
discrete dynamics and nonholonomic mechanics. Interesting applications to
geometrical integration of Hamiltonian systems are obtained.Comment: 33 page
The graded Jacobi algebras and (co)homology
Jacobi algebroids (i.e. `Jacobi versions' of Lie algebroids) are studied in
the context of graded Jacobi brackets on graded commutative algebras. This
unifies varios concepts of graded Lie structures in geometry and physics. A
method of describing such structures by classical Lie algebroids via certain
gauging (in the spirit of E.Witten's gauging of exterior derivative) is
developed. One constructs a corresponding Cartan differential calculus (graded
commutative one) in a natural manner. This, in turn, gives canonical generating
operators for triangular Jacobi algebroids. One gets, in particular, the
Lichnerowicz-Jacobi homology operators associated with classical Jacobi
structures. Courant-Jacobi brackets are obtained in a similar way and use to
define an abstract notion of a Courant-Jacobi algebroid and Dirac-Jacobi
structure. All this offers a new flavour in understanding the
Batalin-Vilkovisky formalism.Comment: 20 pages, a few typos corrected; final version to be published in J.
Phys. A: Math. Ge
Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}
Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)
Jet production in charged current deep inelastic e⁺p scatteringat HERA
The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS
Dissociation of virtual photons in events with a leading proton at HERA
The ZEUS detector has been used to study dissociation of virtual photons in
events with a leading proton, gamma^* p -> X p, in e^+p collisions at HERA. The
data cover photon virtualities in two ranges, 0.03<Q^2<0.60 GeV^2 and 2<Q^2<100
GeV^2, with M_X>1.5 GeV, where M_X is the mass of the hadronic final state, X.
Events were required to have a leading proton, detected in the ZEUS leading
proton spectrometer, carrying at least 90% of the incoming proton energy. The
cross section is presented as a function of t, the squared four-momentum
transfer at the proton vertex, Phi, the azimuthal angle between the positron
scattering plane and the proton scattering plane, and Q^2. The data are
presented in terms of the diffractive structure function, F_2^D(3). A
next-to-leading-order QCD fit to the higher-Q^2 data set and to previously
published diffractive charm production data is presented
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …
