74 research outputs found

    Modeling dimethylsulphide production in the upper ocean

    Get PDF
    Dimethylsulphide (DMS) is produced by upper ocean ecosystems and emitted to the atmosphere, where it may have an important role in climate regulation. Several attempts to quantify the role of DMS in climate change have been undertaken in modeling studies. We examine a model of biogenic DMS production and describe its endogenous dynamics and sensitivities. We extend the model to develop a one-dimensional version that more accurately resolves the important processes of the mixed layer in determining the ecosystem dynamics. Comparisons of the results of the one-dimensional model with an empirical relationship that describes the global distribution of DMS, and also with vertical profiles of DMS in the upper ocean measured at the Bermuda Atlantic Time Series, suggest that the model represents the interaction between the biological and physical processes well on local and global scales. Our analysis of the model confirms its veracity and provides insights into the important processes determining DMS concentration in the oceans

    Modelling dimethylsulphide production at the Bermuda Atlantic time series (BATS)

    Get PDF
    Dimethylsulphide (DMS) is produced by upper ocean ecosystems and emitted to the atmosphere where it may have an important role in climate regulation. Several attempts to quantify the role of DMS in climate change have been undertaken in modeling studies. We examine a model of biogenic DMS production and describe its endogenous dynamics and sensitivities. We extend the model to develop a one-dimensional version that more accurately resolves the important processes of the mixed layer in determining the ecosystem dynamics. Comparisons of the results of the one-dimensional model with vertical profiles of DMS in the upper ocean measured at the Bermuda Atlantic Time Series suggest that the model represents the interaction between the biological and physical processes well. Our analysis of the model confirms its veracity and provides insights into the important processes determining DMS concentration in the oceans

    High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L23609, doi:10.1029/2011GL049712.The vast Antarctic sea-ice zone (SIZ) is a potentially significant source of the climate-active gas dimethylsulfide (DMS), yet few data are available on the concentrations and turnover rates of DMS and the related compounds dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) in sea ice environments. Here we present new measurements characterizing the spatial variability of DMS, DMSP, and DMSO concentrations across the Antarctic SIZ, and results from tracer experiments quantifying the production rates of DMS from various sources. We observed extremely high concentrations (>200 nM) and turnover rates (>100 nM d−1) of DMS in sea-ice brines, indicating intense cycling of DMS/P/O. Our results demonstrate a previously unrecognized role for DMSO reduction as a major pathway of DMS production in Antarctic sea ice.This work was supported in part by Woods Hole Oceanographic Institution’s Ocean Life Institute and by NSF grant ANT-0838872 to KRA.2012-06-1

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Multitrophic Interactions in the Sea: Assessing the Effect of Infochemical-Mediated Foraging in a 1-d Spatial Model

    Get PDF
    The release of chemicals following herbivore grazing on primary producers may provide feeding cues to carnivorous predators, thereby promoting multitrophic interactions. In particular, chemicals released following grazing on phytoplankton by microzooplankton herbivores have been shown to elicit a behavioural foraging response in carnivorous copepods, which may use this chemical information as a mechanism to locate and remain within biologically productive patches of the ocean. In this paper, we use a 1D spatial reaction-diffusion model to simulate a tri-trophic planktonic system in the water column, where predation at the top trophic level (copepods) is affected by infochemicals released by the primary producers forming the bottom trophic level. The effect of the infochemical-mediated predation is investigated by comparing the case where copepods forage randomly to the case where copepods adjust their vertical position to follow the distribution of grazing-induced chemicals. Results indicate that utilization of infochemicals for foraging provides fitness benefits to copepods and stabilizes the system at high nutrient load, whilst also forming a possible mechanism for phytoplankton bloom formation. We also investigate how the copepod efficiency to respond to infochemicals affects the results, and show that small increases (2%) in the ability of copepods to sense infochemicals can promote their persistence in the system. Finally we argue that effectively employing infochemicals for foraging can be an evolutionarily stable strategy for copepods

    Physical and biological variables affecting seabird distributions during the upwelling season of the northern California Current

    Get PDF
    Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 123-143, doi:10.1016/j.dsr2.2004.08.016.As a part of the GLOBEC-Northeast Pacific project, we investigated variation in the abundance of marine birds in the context of biological and physical habitat conditions in the northern portion of the California Current System (CCS) during cruises during the upwelling season 2000. Continuous surveys of seabirds were conducted simultaneously in June (onset of upwelling) and August (mature phase of upwelling) with ocean properties quantified using a towed, undulating vehicle and a multi-frequency bioacoustic instrument (38-420 kHz). Twelve species of seabirds contributed 99% of the total community density and biomass. Species composition and densities were similar to those recorded elsewhere in the CCS during earlier studies of the upwelling season. At a scale of 2-4 km, physical and biological oceanographic variables explained an average of 25% of the variation in the distributions and abundance of the 12 species. The most important explanatory variables (among 14 initially included in each multiple regression model) were distance to upwelling-derived frontal features (center and edge of coastal jet, and an abrupt, inshore temperature gradient), sea-surface salinity, acoustic backscatter representing various sizes of prey (smaller seabird species were associated with smaller prey and the reverse for larger seabird species), and chlorophyll concentration. We discuss the importance of these variables in the context of what factors may be that seabirds use to find food. The high seabird density in the Heceta Bank and Cape Blanco areas indicate them to be refuges contrasting the low seabird densities currently found in most other parts of the CCS, following decline during the recent warm regime of the Pacific Decadal Oscillation.Support from National Science Foundation Grant OCE-0001035, National Oceanic and Atmospheric Administration (NOAA)/Woods Hole Oceanographic Institution-CICOR Grant NA17RJ1223 is gratefully acknowledged

    Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94749/1/jgrd13340.pd
    • …
    corecore