556 research outputs found

    Monte Carlo approximations of the Neumann problem

    Get PDF
    We introduce Monte Carlo methods to compute the solution of elliptic equations with pure Neumann boundary conditions. We first prove that the solution obtained by the stochastic representation has a zero mean value with respect to the invariant measure of the stochastic process associated to the equation. Pointwise approximations are computed by means of standard and new simulation schemes especially devised for local time approximation on the boundary of the domain. Global approximations are computed thanks to a stochastic spectral formulation taking into account the property of zero mean value of the solution. This stochastic formulation is asymptotically perfect in terms of conditioning. Numerical examples are given on the Laplace operator on a square domain with both pure Neumann and mixed Dirichlet-Neumann boundary conditions. A more general convection-diffusion equation is also numerically studied

    Long time behavior of a mean-field model of interacting neurons

    Get PDF
    We study the long time behavior of the solution to some McKean-Vlasov stochastic differential equation (SDE) driven by a Poisson process. In neuroscience, this SDE models the asymptotic dynamic of the membrane potential of a spiking neuron in a large network. We prove that for a small enough interaction parameter, any solution converges to the unique (in this case) invariant measure. To this aim, we first obtain global bounds on the jump rate and derive a Volterra type integral equation satisfied by this rate. We then replace temporary the interaction part of the equation by a deterministic external quantity (we call it the external current). For constant current, we obtain the convergence to the invariant measure. Using a perturbation method, we extend this result to more general external currents. Finally, we prove the result for the non-linear McKean-Vlasov equation
    • …
    corecore