533 research outputs found
Magnetic and structural properties of GeMn films: precipitation of intermetallic nanomagnets
We present a comprehensive study relating the nanostructure of Ge_0.95Mn_0.05
films to their magnetic properties. The formation of ferromagnetic nanometer
sized inclusions in a defect free Ge matrix fabricated by low temperature
molecular beam epitaxy is observed down to substrate temperatures T_S as low as
70 deg. Celsius. A combined transmission electron microscopy (TEM) and electron
energy-loss spectroscopy (EELS) analysis of the films identifies the inclusions
as precipitates of the ferromagnetic compound Mn_5Ge_3. The volume and amount
of these precipitates decreases with decreasing T_S. Magnetometry of the films
containing precipitates reveals distinct temperature ranges: Between the
characteristic ferromagnetic transition temperature of Mn_5Ge_3 at
approximately room temperature and a lower, T_S dependent blocking temperature
T_B the magnetic properties are dominated by superparamagnetism of the Mn_5Ge_3
precipitates. Below T_B, the magnetic signature of ferromagnetic precipitates
with blocked magnetic moments is observed. At the lowest temperatures, the
films show features characteristic for a metastable state.Comment: accepted for publication in Phys. Rev. B 74 (01.12.2006). High
resolution images ibide
Potential therapeutic effects of natural heme oxygenase-1 inducers in cardiovascular diseases.
Significance: Many physiological effects of natural antioxidants, their extracts or their major active components, have been reported in recent decades. Most of these compounds are characterized by a phenolic structure, similar to that of α-tocopherol, and present antioxidant properties that have been demonstrated both in vitro and in vivo. Polyphenols may increase the capacity of endogenous antioxidant defenses and modulate the cellular redox state. Such effects may have wide-ranging consequences for cellular growth and differentiation. Critical Issues: The majority of in vitro and in vivo studies conducted so far have attributed the protective effect of bioactive polyphenols to their chemical reactivity toward free radicals and their capacity to prevent the oxidation of important intracellular components. One possible protective molecular mechanism of polyphenols is nuclear factor erythroid 2-related factor (Nrf2) activation, which in turn regulates a number of detoxification enzymes. Recent Advances: Among the latter, the heme oxygenase-1 (HO-1) pathway is likely to contribute to the established and powerful antioxidant/anti-inflammatory properties of polyphenols. In this context, it is interesting to note that induction of HO-1 expression by means of natural compounds contributes to prevention of cardiovascular diseases in various experimental models. Future Directions: The focus of this review is on the role of natural HO-1 inducers as a potential therapeutic strategy to protect the cardiovascular system against various stressors in several pathological conditions
Prevalence and severity of airway obstruction in an Italian adult population
Background. This study sets out to estimate the prevalence and the degree of severity of bronchial obstruction in an adult population with three different diagnostic criteria: the European Respiratory Society (ERS), the American Thoracic Society (ATS), and the World Health Organization (WHO) defined as Global Obstructive Lung Disease (GOLD). Methods. 1514 subjects underwent complete medical evaluation and spirometry. Results. The prevalence of bronchial obstruction was respectively 27.5% (ERS), 33% (GOLD), and 47.3% (ATS). The prevalence of bronchial obstruction in the smoker group was 33.4% (ERS), 38.1% (GOLD), and 52.3% (ATS). The prevalence of obstruction in the ex-smoker group was 33% (ERS), 41.4% (GOLD), and 57.1% (ATS). The prevalence of obstruction in the non-smoker group was 21.1% (ERS), 24.9% (GOLD), and 38.6% (ATS). Conclusions. The results show that the prevalence of airway obstruction increases proportionally with age; the cigarette smoking represents an important conditioning factor. These observations warrant the necessity of a more complete and multi-parametric analysis in the evaluation of patients with airway obstruction using methodologies that explore the functional state and the risk factors that cause the airway obstruction
NuSTAR Observations of Candidate Subparsec Binary Supermassive Black Holes
© 2024 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We present an analysis of NuSTAR X-ray observations of three active galactic nuclei (AGN) that were identified as candidate subparsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey based on apparent periodicity in their optical light curves. Simulations predict that close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs. We previously observed these AGN with Chandra and found no differences between their low-energy X-ray properties and the larger AGN population. However, some models predict differences to be more prominent at energies higher than probed by Chandra. We find that even at the higher energies probed by NuSTAR, the spectra of these AGN are indistinguishable from the larger AGN population. This could rule out models predicting large differences in the X-ray spectra in the NuSTAR bands. Alternatively, it might mean that these three AGN are not binary SMBHs.Peer reviewe
Massive binary black holes in galactic nuclei and their path to coalescence
Massive binary black holes form at the centre of galaxies that experience a
merger episode. They are expected to coalesce into a larger black hole,
following the emission of gravitational waves. Coalescing massive binary black
holes are among the loudest sources of gravitational waves in the Universe, and
the detection of these events is at the frontier of contemporary astrophysics.
Understanding the black hole binary formation path and dynamics in galaxy
mergers is therefore mandatory. A key question poses: during a merger, will the
black holes descend over time on closer orbits, form a Keplerian binary and
coalesce shortly after? Here we review progress on the fate of black holes in
both major and minor mergers of galaxies, either gas-free or gas-rich, in
smooth and clumpy circum-nuclear discs after a galactic merger, and in
circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard
cover in the Space Sciences Series of ISSI "The Physics of Accretion onto
Black Holes" (Springer Publisher
Improvement of characterization accuracy of the nonlinear photonic crystals using finite elements-iterative method
We investigate nonlinear one- and two-dimensional photonic crystals by
applying a finite element-iterative method.Numerical results show the essential
influence of nonlinear elements embedded into a quarter-wave stack and the
sharp photonic crystal waveguide bend on the spectral characteristics of these
structures. We compare our results with those obtained in [21] from the
discrete equation method for the case of a sharp waveguide bend. The comparison
shows that neglecting the nonuniform field distribution inside the embedded
nonlinear elements leads to overestimation of the waveguide bend
transmissivity.Comment: 5 pages, 9 figure
Measurement of the B+ --> p pbar K+ Branching Fraction and Study of the Decay Dynamics
With a sample of 232x10^6 Upsilon(4S) --> BBbar events collected with the
BaBar detector, we study the decay B+ --> p pbar K+ excluding charmonium decays
to ppbar. We measure a branching fraction Br(B+ --> p pbar
K+)=(6.7+/-0.5+/-0.4)x10^{-6}. An enhancement at low ppbar mass is observed and
the Dalitz plot asymmetry suggests dominance of the penguin amplitude in this B
decay. We search for a pentaquark candidate Theta*++ decaying into pK+ in the
mass range 1.43 to 2.00 GeV/c2 and set limits on Br(B+ -->
Theta*++pbar)xBr(Theta*++ --> pK+) at the 10^{-7} level.Comment: 8 pages, 7 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Search for the W-exchange decays B0 --> Ds(*)- Ds(*)+
We report a search for the decays , , in a sample of 232
million decays to \BBb ~pairs collected with the \babar detector
at the PEP-II asymmetric-energy storage ring. We find no significant
signal and set upper bounds for the branching fractions: and at 90% confidence level.Comment: 8 pages, 2 figures, submitted to PRD-R
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
- …