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Abstract

Significance: Many physiological effects of natural antioxidants, their extracts or their major active components,
have been reported in recent decades. Most of these compounds are characterized by a phenolic structure,
similar to that of a-tocopherol, and present antioxidant properties that have been demonstrated both in vitro and
in vivo. Polyphenols may increase the capacity of endogenous antioxidant defenses and modulate the cellular
redox state. Such effects may have wide-ranging consequences for cellular growth and differentiation. Critical
Issues: The majority of in vitro and in vivo studies conducted so far have attributed the protective effect of
bioactive polyphenols to their chemical reactivity toward free radicals and their capacity to prevent the oxidation
of important intracellular components. One possible protective molecular mechanism of polyphenols is nuclear
factor erythroid 2-related factor (Nrf2) activation, which in turn regulates a number of detoxification enzymes.
Recent Advances: Among the latter, the heme oxygenase-1 (HO-1) pathway is likely to contribute to the es-
tablished and powerful antioxidant/anti-inflammatory properties of polyphenols. In this context, it is interesting
to note that induction of HO-1 expression by means of natural compounds contributes to prevention of car-
diovascular diseases in various experimental models. Future Directions: The focus of this review is on the role of
natural HO-1 inducers as a potential therapeutic strategy to protect the cardiovascular system against various
stressors in several pathological conditions. Antioxid. Redox Signal. 18, 000–000.

Introduction

Oxidative stress, the result of an imbalance between
antioxidants and pro-oxidants (121), is associated with

the aging process as well as over 100 human diseases (122).
Under physiological conditions, cells maintain the redox
balance through generation and elimination of reactive oxy-
gen species (ROS) by scavenging free radicals and up-
regulating antioxidant enzymes. At low levels, ROS act as
signaling molecules to promote cell survival, while acceler-
ated production of ROS without concomitant increases in
antioxidant enzyme capacity can induce damage and cause
cell death (98). Cancer (70), diabetes (107), cardiovascular

diseases (CVD) (34), pulmonary diseases (78), and neurode-
generative diseases, including Alzheimer’s and Parkinson’s
disease (21), have all been associated with increased ROS,
demonstrating the role of oxidative stress in a wide array of
pathological processes.

In an effort to counteract the detrimental effects of oxidative
stress, investigators have studied antioxidant supplements,
including Vitamins C and E and b-carotene. Recent clinical
trials have been equivocal, with antioxidant vitamins failing
to improve markers of oxidative disease (120), and in some
cases, even increasing pro-oxidant concentrations (151). Cur-
rent research efforts have subsequently turned to novel
compounds that increase endogenous antioxidant enzyme

1Department of Drug Sciences, University of Catania, Catania, Italy.
2Department of Cardiac Surgery, IRCCS Policlinico ‘‘S. Donato,’’ Milan, Italy.
3Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.
4Euromediterranean Institute of Science and Technology, Palermo, Italy.
5Institute ‘‘Paolo Sotgiu’’ for Research in Quantitative and Quantum Psychiatry and Cardiology, L.U.de.S. University of Human Sciences

and Technology, Lugano, Switzerland.
6San Camillo De Lellis Hospital, Manfredonia, Italy.
7Department and School of Anesthesia and Intensive Care, Catania University Hospital, Catania, Italy.
8Department of Biochemistry, Human Nutrition Unit, G. D’annunzio University of Chieti, Chieti, Italy.
9Department of Cardio-Thoracic and Respiratory Sciences, Monaldi Hospital, Second University of Naples, Naples, Italy.

10Department of Maternal Fetal and Neonatal Medicine ‘‘Cesare Arrigo Children’s Hospital,’’ Alessandria, Italy.
*These two authors contributed equally to this article.

ANTIOXIDANTS & REDOX SIGNALING
Volume 18, Number 5, 2012
ª Mary Ann Liebert, Inc.
DOI: 10.1089/ars.2011.4360

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/53280853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


activity, providing the potential for more profound antioxi-
dant protection than that is achieved with supplemental an-
tioxidant vitamins.

Phytochemicals have recently been suggested to be com-
pounds capable of increasing endogenous antioxidants (74,
85, 100) such as heme oxygenase (HO). This is the first and
rate-limiting enzyme in the catabolism of heme (85) to yield
equimolar amounts of biliverdin, carbon monoxide (CO),
and free iron (Fig. 1). To date, two isoforms of HO, desig-
nated HO-1 and HO-2, have been identified in mammals
(93). HO-1 is also known as heat shock protein-32. Its human
form is composed of 288 amino acids with a molecular mass
of 32,800 Da and shares about 80% amino acid sequence
identity with rat HO-1. On the other hand, human HO-2 is a
36-kDa protein that consists of 316 amino acids with three
cysteine residues. HO-1 is highly inducible by hemin and
other chemical and physical agents such as ultraviolet rays,
hydrogen peroxides, heavy metals, hypoxia, and nitric oxide
(NO) (93). HO-1 has been shown to exert cytoprotective
properties in various cells, including neurons (88), pancreatic
b-cells (51), and cardiomyocytes (138). Under conditions of
oxidative stress, hypoxia or hyperthermia, the induction of
HO-1 would account for the majority of heme breakdown,
leading to the formation of biliverdin and CO. Since HO-1 is
induced as a protective mechanism in response to various
stimuli, targeted induction of this stress-response enzyme
may be considered an important therapeutic strategy for
protection against inflammatory processes and oxidative
tissue damage. Several original articles and reviews have
been published so far regarding the putative role of HO-1 in
CVD (13, 33, 39, 73). However, most deal with HO-1 in-
ducers, which are far from being used in everyday clinical

practice, such as CoPP, Hemin, SnCl2, L4F, and adeno- or
retroviral vectors (Table 1). Therefore, the present review
will focus on the effects of natural antioxidants, which are
commercially available and ready to be used in a clinical
setting (i.e., supplements).

In this review, recent findings on the implications of HO-1
induction in cellular adaptive cytoprotective response to
various insults and inflammatory conditions are considered,
with particular emphasis placed on targeted HO-1 induction
by natural compounds and their potential for cardiovascular
protection.

CVD and Antioxidants

CVD and oxidative stress

CVD affect more than 80 million people in the United States
and are the leading cause of death and disability in the Wes-
tern World (149). Recent studies have implicated increased
production of ROS in the initiation and progression of CVD
(2), specifically in the etiology of hypertension (46), congestive
heart failure (131), and stroke (21). These studies suggest an
important role for ROS in the development of CVD, and
highlight the need for therapeutic methods to counteract the
changes in the redox status observed in patients with devel-
oping heart disease.

Several antioxidant compounds have been tested for pre-
vention of CVD. These antioxidant compounds include pro-
bucol, coenzyme Q-10, Vitamin C, Vitamin E, N-acetylcysteine,
superoxide dismutase (SOD) mimetics, as well as red-wine
polyphenols (49). Administration of some exogenous antiox-
idant compounds has been used for preventive and/or ther-
apeutic intervention in oxidative cardiovascular disorders in

FIG. 1. Schematic representation of the heme-degradative pathway. HO-1/HO-2 degrades heme, which is oxidatively
cleaved at the methylene bridge to produce equimolar amounts of CO, biliverdin, and iron. Biliverdin is converted to
bilirubin in a stereospecific manner by the cytosolic enzyme, biliverdin reductase. Both CO and bilirubin are bioactive
molecules, and the iron generated by HO-1 and HO-2 is immediately sequestered by associated increases in ferritin. CO,
carbon monoxide; HO-1, heme oxygenase-1.
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animal models (60). Another strategy for protecting against
oxidative cardiac injury may be via chemically mediated up-
regulation of endogenous antioxidants and Phase II enzymes
in the cardiac tissue. Such a strategy relies on a profound
understanding of the chemical inducibility of cardiac antiox-
idant and Phase II enzymes, as well as the underlying sig-
naling mechanisms (155). In general, the antioxidant defense
mechanism includes enzymes such as SOD, which removes
superoxide; glutathione peroxidase (GPx), which converts
hydrogen peroxide into water and various hydroperoxides
into less-harmful hydroxides; catalase (CAT), which can also
break down hydrogen peroxide; and HO. Phenolic acids are a
group of phenolic compounds that are widely distributed in
foodstuffs, mostly in whole grains, fruits, vegetables, and
beverages. Epidemiological studies have suggested an asso-
ciation between the consumption of phenolic acid-rich foods
or beverages and the prevention of many diseases (130). These
phenolic compounds exhibit good in vitro antioxidant and
chemoprotective properties, which may have beneficial ef-
fects in vivo (24).

Several mechanisms have been suggested to explain a di-
rect or indirect action of antioxidants.

Direct antioxidants. Antioxidants, defined as any sub-
stance that decreases the severity of oxidative stress by
forming less-active radicals or by quenching damage created
by free-radical chain reactions, broadly include any sub-
stances that delay or prevent the oxidation of a substrate (72).
Antioxidant effects of a compound may act by two mecha-
nisms: the compound itself may exhibit direct antioxidant
effects through scavenging ROS or inhibiting their formation,
or the compound may indirectly upregulate endogenous an-
tioxidant defenses. Direct exogenous antioxidants include
Vitamin C, which reacts stoichiometrically with ROS to
scavenge aqueous-state free radicals, b-carotene, and Vitamin
E, a membrane-bound antioxidant scavenger.

Although supplementation of direct antioxidants is a
highly researched topic, the compounds are still only pre-
sumed effective (1). Studies of supplementation with a sin-
gle antioxidant vitamin have shown that this intervention
either has no effect or results in increased levels of all-cause
mortality (1).

Indirect antioxidants. As a result of the apparent ineffec-
tiveness of supplemental antioxidant vitamins in decreasing
oxidative stress, recent research has focused on novel ways to
induce an endogenous antioxidant response. Current research

efforts have turned to compounds that can be used to increase
endogenous antioxidant enzyme activity, providing the po-
tential for more profound antioxidant protection than the tra-
ditional approach of antioxidant vitamin supplementation.
Phytochemicals, chemical compounds derived from plants,
have been examined as a class of these novel inducers of anti-
oxidant enzymes. Also described as indirect antioxidants due
to their role in activating Phase II cytoprotective enzymes,
phytochemicals stimulate a battery of antioxidant responses in
addition to directly scavenging ROS (Fig. 2). Indirect antioxi-
dant compounds act catalytically and are therefore not con-
sumed in the reaction. Unlike direct antioxidants, they have
long half-lives, and are unlikely to evoke pro-oxidant effects
(132), suggesting the ability to promote a response to oxidative
stress, which is both more efficient and longer lasting.

Additionally, studies on polyphenols support the ability of
these compounds to activate the nuclear factor erythroid
2-related factor (Nrf2) (7), a critical step in the induction
of antioxidant-response mechanisms. By coordinating the
expression of cytoprotective proteins, indirect antioxidants
provide the potential for greater and more profound upre-
gulation of antioxidant properties and cell protection.

Induction of these cytoprotective proteins is regulated at
transcriptional level and is mediated by a specific enhancer,
the antioxidant-response element (ARE), found in the pro-
moter of the enzyme’s gene.

The ARE. The first experimental evidence for the exis-
tence of ARE was found in the late 1980’s. Indeed, during
studies of xenobiotic metabolism, a group of compounds was
found to induce Phase I and II xenobiotic metabolizing en-
zymes (Fig. 2). Many natural and synthetic phenols and thiol-
containing compounds can increase transcription of the genes
regulated by the ARE, as well as heavy metal atoms, thiol-
containing compounds, hydroperoxides, and heme com-
plexes. Although all activators differ structurally, they all
share the property of electrophilicity (42).

Located in the 5¢-flanking regulatory region of Phase II
target antioxidant genes, the cis-acting ARE is a DNA site
containing the nucleotide sequence 5¢-AGTGACTnnnGCAG-
3¢ (38). This site binds nuclear transcription factor Nrf2,
resulting in transcription in a number of xenobiotic and
antioxidant enzymes (Fig. 2).

Nrf2: the master regulator of the antioxidant cellular de-
fense system. Nrf2 is a member of the basic leucine-zipper
(bZip) transcription factor family (128). Under normal

Table 1. Commonly Used Heme Oxygenase-1 Inducers

Name of inducer Tested models References

Hemin Hypertensive rat model, VSMC, cardiac ischemia and reperfusion, endothelial
cells, animal model of vascular thrombosis.

(4, 30, 55, 58, 143, 148)

CoPP SHR, cardiomyocyte, endothelial cells, cardiac ischemia and reperfusion. (15, 36, 61, 62)
Hemearginate Mineralocorticoid-induced hypertensive rats, SHR, vascular endothelial cell. (63, 83, 99)
SnCl2 SHR (35, 117)
L-4F Arterioles isolated from hypercholesterolemic Ldlr - / - mice, endothelial

cells, cardiac ischemia/reperfusion.
(101, 102, 136)

Adeno/retro/
lentivirus

MSC-treated hearts, rat aortic transplant model, vascular endothelial cells. (14, 32, 77, 146, 152)

SHR, spontaneously hypertensive rats; VSMCs, vascular smooth muscle cells; MSC, mesenchymal stem cell.
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conditions, Nrf2 is sequestered in the cytoplasm by its in-
volvement in an inactive complex with Kelch-like ECH-as-
sociated protein 1 (Keap1) (128). Initially thought to passively
sequester Nrf2 in the cytoplasm, it is now known that Keap1
plays an active role in targeting Nrf2 for ubiquitination and
proteasomal degradation by functioning as a component of
the Cul3 E3 ubiquitin ligase complex (84).

Regulation of Nrf2

Nrf2 can be induced injuriously by ROS (41) or non-
injuriously by phytochemicals such as curcumin and sulfur-
ophane (64, 145) (Fig. 2). Upon exposure to oxidants or
chemoprotective compounds, cysteine residues on the
Keap1/Nrf2 complex sense cellular redox changes, resulting
in an alteration in the structure of Keap1. As shown in Figure
1, modification of the Keap1 cysteine residues stabilizes Nrf2,
facilitating its translocation into and accumulation in the
nucleus. After translocation, Nrf2 forms a heterodimer with
Maf and Jun bZip transcription factors, which bind to the 5¢-
upstream cis-acting regulatory sequence known as the ARE
(45) and induce transcription of Phase II antioxidant enzymes.

Natural Inducers of HO-1

A number of natural antioxidant compounds contained in
foods and plants have been demonstrated to be effective
nonstressful and noncytotoxic inducers of the response pro-
tein HO-1 in various cellular models (Table 2). Most of these
compounds are contained in plants, which besides having

been widely used as food, spices, or flavoring since time im-
memorial, also represent locally traditional medicinal plants.

Curcumin

Curcumin (diferuloylmethane) (Fig. 3) is the most investi-
gated natural HO-1 inducer. Curcumin is an yellow pigment
obtained by populations living in Asian tropical regions by
drying and powdering the rhizome of turmeric (Curcuma
longa Linn). Widely used as food flavoring, it also plays
an important role in traditional medicine due to its anti-
inflammatory, anticarcinogenic, and antioxidant proper-
ties. The major components of turmeric are the curcuminoids
that include curcumin, demethoxycurcumin (DMC), and bis-
demethoxycurcumin (BDMC) (16). Their chemical structures
are illustrated in Figure 3. Curcumin has been demonstrated
to be a potent HO-1 inducer in several cellular models (90). At
a cellular level, curcumin has been shown to inhibit expres-
sion of adhesion molecules (11), possibly by inhibition of
stress transcription factors (89). Ongoing experimental and
clinical studies suggest that curcumin and its curcuminoids
exhibit unique cytoprotective (114), anti-inflammatory (118),
and anticancer properties (19). In recent years, it has also been
reported that curcumin acts as a nonstressful and non-
cytotoxic inducer of the cytoprotective HO-1 and can maxi-
mize the intrinsic antioxidant potential of cells (114) (Fig. 4).

In particular, some authors tested various concentrations
of curcumin (0–30 lM) on endothelial HO activity and
HO-1 protein expression (7). Exposure of endothelial cells to
curcumin (1–15 lM) for 18 h resulted in a concentration-

FIG. 2. Transcriptional activation of antioxidant genes by phytochemicals via the Nrf2-Keap1 pathway. Isoflavones and
other polyphenols activate intracellular kinase cascades, leading to acute activation of eNOS, MAPKs, and NO and/or ROS
generation. Increased NO, ROS will modify cysteine residues on Keap1 leading to nuclear traslocation of the redox-sensitive
transcription factor Nrf2. After translocation, Nrf2 forms a heterodimer with Maf and Jun bZip transcription factors, which
bind to the ARE and induce transcription of Phase II antioxidant enzymes and HO-1. ARE, antioxidant-response element;
bZip, basic leucine zipper; eNOS, endothelial nitric oxide synthase; ERK, extracellular signal-regulated kinase; JNK, c-Jun
NH2- terminal kinase; Keap1, Kelch-like ECH-associated protein 1; MAPKs, mitogen-activated protein kinases; NO, nitric
oxide; Nrf2, nuclear factor erythroid 2-related factor; PI-3K, phosphatidylinositol-3 kinase; ROS, reactive oxygen species.
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dependent increase in HO activity, showing a maximal effect
at 15 lM. In the same set of experiments, the authors showed
that curcumin attenuates oxidative stress after hypoxia in
endothelial cells, and this effect is dependent on increased HO
activity (56).

Successive experiments tested whether other derivatives of
curcumin present in turmeric, such as DMC and BDMC (Fig.
3), would also stimulate this enzyme induction. The authors
found that pure curcumin, DMC, and BDMC all significantly
increased HO-1 expression after 6-h incubation. However,
despite displaying a similar basic chemical structure, the three
compounds affected the pattern of HO-1 protein inducibility
in a different fashion. For example, removal of one methoxy
group from the molecule of curcumin, as in DMC, affected
HO-1 expression slightly. Removal of both methoxy groups,
as in BDMC, significantly decreased HO-1 expression. Con-
sistent with these results, HO activity also differed for each
curcuminoid tested in this study, the order being curcu-
min > DMC > BDMC (56). Generally, HO-1 expression is in-
duced by stimuli that activate the mitogen-activated protein
kinases (MAPKs) (20, 53) (Fig. 4). Three major subgroups of
the MAPK family have been identified to include extracellular
signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2- terminal
kinase ( JNK), and p38 MAPK. Depending on the stimuli
specificity, contradictory results on the regulatory role of
different MAPK pathways for HO-1 expression were ob-
served (53). In the case of curcumin, the activation of the p38
MAPK pathway was found to be involved in HO-1 expression
(7, 92). To investigate the signal transduction pathways in-
volved in regulating HO-1 expression in response to curcu-
minoids, some authors examined the effects of three
pharmacological inhibitors of signaling intermediates on HO-
1 protein levels. Treatment of endothelial cells with the p38
MAPK inhibitor (SB203580) reduced curcuminoid-induced
HO-1 expression. Neither JNK inhibitor (SP600125) nor
MAP/ERK kinase inhibitor (U0126) had a significant effect.
However, these results clearly show that the pattern of HO-1
protein inducibility differed for each curcuminoid tested in
the study, indicating that even subtle changes in the chemical
structure can significantly affect the potency of curcuminoids
to enhance endothelial HO-1 expression and HO activity (7).

Resveratrol

Resveratrol (trans-3,4,5-trihydroxystilbene) is a natural
polyphenolic stilbene that is frequently found in grapes and
other food products (103) (Fig. 5). It is present in cis- and trans-
isoforms, with the latter being the biologically active form.
Resveratrol has been identified in more than 70 species of
plants, including grapevines (Vitis vinifera), mulberries (Morus
rubra), Vaccinum species, and peanuts (Arachis hypogea), and it
is thought to have diverse antiatherogenic activities (80, 123),
such as the inhibition of low density lipoprotein (LDL) oxi-
dation (9) and platelet aggregation (147) and regulation of
vascular smooth muscle proliferation (153). Epidemiological
studies have shown that in southern France and other Medi-
terranean territories, the morbidity and mortality rate of cor-
onary artery disease is low, despite a diet rich in saturated fats
and smoking habits (10). This unexpected epidemiological
finding was termed the French paradox (137). Exactly how
resveratrol exerts its cardioprotective effects is not completely
understood, but they have been ascribed to its ability to block
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platelet aggregation, inhibit oxidation of low-density lipo-
protein, and induce NO production. Several studies within
the last few years have shown that resveratrol protects against
coronary heart disease due to its significant antioxidant
properties (22, 108). Additionally, several studies have re-
ported that resveratrol at high concentrations possesses anti-
inflammatory activity attributed to blockage of NF-kB acti-
vation by inhibiting phosphorylation and degradation of
IkBa, thereby preventing nuclear translocation of p65 and p50
(Fig. 6) (94, 104).

Resveratrol-mediated HO-1 induction has been reported in
neuronal cultures and has been considered to have potential
neuroprotective action (8, 112). The compound is the principal
active component of red wine, and its intake is inversely
correlated with the incidence of chronic CVD such as ath-
erosclerosis and vascular thrombosis (12). Many studies have
found that trans-resveratrol prevents the progression of CVD.
Trans-resveratrol attenuates cardiac hypertrophy in sponta-
neously hypertensive rats via AMP kinase activation (17) and
decreases blood pressure in hypertensive rats (97). The com-
pound also suppresses development of myocarditis (150) and

atherogenic lesion formation (31). Resveratrol has also been
shown to modulate diverse cell cycle regulatory genes (e.g.,
p53, Rb, and cyclins) and these are related to its anticancer or
antiproliferation effect (44).

Substantial evidence indicates that resveratrol pharmaco-
logically preconditions the heart to resist ischemia/reperfu-
sion insults. Both NO-dependent pathways (140) and the
activation of adenosine receptors (27) are mechanisms that
could be mediating the heart preconditioning by resveratrol.
In cardiomyocytes, the NO-mediated regulation of cardio-
protective enzymes by NO-mediated mechanisms is crucial
for cell survival. Resveratrol (trans-3,5,4¢-trihydroxystilbene),
a polyphenolic compound and a naturally occurring phyto-
alexin, has been designated the active agent (48). The benefi-
cial effect of resveratrol on coronary disease may be
attributable, in part, to its ability to retard the progression of
early atherosclerotic lesions (111). It also possesses many
other biologic activities, including an estrogenic property (28),
antiplatelet activity (119), an anti-inflammatory function (25),
and a cancer chemopreventive property that has the ability to
inhibit angiogenesis and induce apoptosis (29).

Juan et al. (59) assessed the induction of HO-1 by resveratrol
in human aortic smooth muscle cells at both the mRNA and
protein levels (Fig. 6). Northern blot analysis showed that
resveratrol at concentrations of 1 and 10 lM significantly in-
duced HO-1 induction, but not at concentrations of 20 and
40 lM. In particular, induction of HO-1 mRNA by resveratrol
was observed at 4 h and increased with time up to 24 h of
treatment. Consistently, western blot analysis showed that
HO-1 was highly expressed in cells exposed to resveratrol at
the concentrations of 1 and 10 lM, but not at the concentra-
tions of 20 and 40 lM. To reveal the molecular mechanism of
resveratrol-mediated HO-1 induction, MAPK and NF-kB in-
hibitors were employed (Fig. 6). The level of resveratrol-in-
duced HO-1 expression was attenuated by TPCK (a protease
inhibitor that blocks activation of NF-kB) and BAY 11-7082
(an inhibitor of IkBa phosphorylation), but not by MAPK in-
hibitors, including U0126, curcumin, and SB202190, which are
inhibitors of Erk1/2, JNK, and p38 MAPK, respectively.
Similarly, previous reports also showed that rats receiving
resveratrol (gavage, 2.5 mg/kg) exhibited a significant cardi-
oprotection as evidenced by superior postischemic ventricu-
lar recovery, reduced myocardial infarct size, and decreased
number of apoptotic cardiomyocytes. Resveratrol induced the

FIG. 4. Induction of heme oxygenase by curcumin. HO-1
expression is induced by stimuli that activate the MAPKs.
In the case of curcumin, the activation of the p38 MAPK
pathway was found to be involved in HO-1 expression.

FIG. 3. Chemical structures
of curcumin, demethoxy-
curcumin, and bis-
demethoxycurcumin.
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activation of nuclear factor kappa-b (NFkB), the phosphory-
lation of p38MAP kinase b and Akt, as well as the inhibition
of p38 MAPKa; all these effects, except the activation of
NFkB, were completely reversed by treatment with Sn-
protoporphyrin IX (SnPP). These results indicate that resver-
atrol generates cardioprotection by preconditioning the heart
by HO-1-mediated mechanisms, which are regulated by
p38MAP kinase and Akt survival signaling, but nondepen-
dent on NFkB activation (Fig. 6). On the other hand, resver-
atrol inhibits Akt and STAT3 through an increase in oxygen
free-radical generation, thus suggesting that resveratrol im-
pacts on Akt activation in a cell-specific manner. Consistent
with these results, Kaga et al. (59a) showed that resveratrol (10
and 50 lM) induced HO-1 in human coronary arteriolar en-
dothelial cells. The effect of HO-1 induction accounted for
increased VEGF production and increased angiogenesis. The
authors further tested their hypothesis in vivo in a model of
descending coronary artery occlusion and demonstrated that
the beneficial effects of resveratrol are abolished after HO
enzyme inhibition. Similarly, resveratrol (1–100 lM) dose-
dependently inhibited IL-1b-stimulated MCP-1 secretion,
with almost 45% inhibition at 50 lM resveratrol. Furthermore,
the authors showed that this effect was dependent on Gi

protein and NO (26). Interestingly, the beneficial effects of

resveratrol under these experimental conditions were not
abolished by HO activity inhibition or HO-1 silencing, sug-
gesting that the effects on MCP-1 synthesis are mediated via
distinct signaling pathways.

Further, Ungvari et al. found that oxidized LDL and TNF-a
elicited significant increases in caspase-3/7 activity in endo-
thelial cells and cultured rat aortas, which were prevented by
resveratrol pretreatment (106–104 M) (134). The protective
effect of resveratrol was attenuated by inhibition of GPx and
HO-1, suggesting a role for antioxidant systems in the anti-
apoptotic action of resveratrol (134).

Maulik and coworkers showed that resveratrol-treated di-
abetic rats demonstrated significant reduction in glucose
levels as compared to the nontreated diabetic animals, and
improved left ventricular function throughout reperfusion
compared to diabetic or L-NAME-treated animals (127).
Furthermore, the authors showed that cardioprotection from
ischemic injury in resveratrol-treated diabetic rats showed
decreased infarct size and cardiomyocyte apoptosis com-
pared to diabetic animals. Resveratrol produced significant
induction of p-AKT, p-eNOS, Trx-1, HO-1, and VEGF in ad-
dition to increased activation of MnSOD activity in diabetic
animals compared to nondiabetic animals. However, treat-
ment with L-NAME in resveratrol-treated and nontreated
diabetic animals demonstrated significant downregulation of
the protein expression profile and MnSOD activity (127),
suggesting that the beneficial effects of resveratrol are de-
pendent on NO production.

Finally, Penumathsa et al. showed that high cholesterol-
induced complications such as increased lipid levels, Cav1/
endothelial nitric oxide synthase (eNOS) association, and de-
creased HO-1 expression, as well as reductions in myocardial
functions, can be normalized with resveratrol therapy (106).
The authors documented that resveratrol regulates HO-1 con-
versely in disruption of the Cav-1/eNOS association in a
hypercholesterolemic myocardium. They further validated
their results using HO-1 transgenic mice. HO-1 overexpression

FIG. 5. Chemical structure of resveratrol.

FIG. 6. Anti-inflammatory activ-
ity of resveratrol and HO-1 ex-
pression. Resveratrol induced the
activation of NFkB, the phosphor-
ylation of p38MAP kinase b and
Akt, all these effects were com-
pletely reversed by treatment with
SnPP. These results indicate that
resveratrol generates cardioprotec-
tion by preconditioning the heart
by HO-1-mediated mechanisms,
which are regulated by MAPKs and
Akt survival signaling, but nonde-
pendent on NFkB activation. NFkB,
nuclear factor kappa-b; SnPP, Sn-
protoporphyrin IX.
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resulted in a significant decrease in Cav-1/eNOS association,
thus demonstrating that HO-1 regulates Cav-1/eNOS con-
versely (106). Recently, resveratrol has also been shown to
prevent doxorubicin toxicity and apoptosis by an HO-1-
dependent pathway (43).

The role of HO-1 in mediating the beneficial effect of re-
sveratrol is further substantiated by a number of studies with
pharmacological inhibitors of HO, HO-1 - / - animals, and
siRNA. Furthermore, in a wire-injured femoral artery mouse
model, oral administration of trans-resveratrol significantly
suppressed intimal hyperplasia. The same authors demon-
strated that this effect was reversed by an HO activity inhib-
itor ZnPPIX (65).

Flavonoids

Flavonoids are naturally occurring antioxidants belonging
to the large family of polyphenols. They are widely distrib-
uted in plants used as food, as well as traditional medicines,
due to their particular variety of clinically relevant proper-
ties, such as antitumor, antiplatelet, anti-ischemic, and anti-
inflammatory activities.

Quercetin (Fig. 7) is one of the most common flavonoid,
and probably, overall the most investigated. In an experi-
mental model of atherosclerosis, quercetin (1.3 mg/day), but
not ( - )-epicatechin, significantly increased the expression of
HO-1 protein in lesions versus ApoE( - / - ) controls (91).

Anthocyanins are water-soluble plant pigments responsi-
ble for the blue, purple, and red color of many plant tissues.
They occur primarily as glycosides of their respective agly-
cone anthocyanidin chromophores (Fig. 7), with the sugar
moiety mainly attached at the 3-position on the C-ring or the
5, 7-position on the A-ring. Anthocyanins have been shown to
be strong antioxidants, and may exert a wide range of health
benefits through antioxidant or other mechanisms (71). It has
been suggested that anthocyanins play an important role in

the prevention of human diseases associated with oxidative
stress, for example, coronary heart disease and cancer (95).
The antioxidant properties of anthocyanins have been dem-
onstrated by both in vitro and in vivo experiments (54, 95, 110,
113, 115).

In this regard, previous studies showed that delphinidin
(50 and 100 lM) (Fig. 7) significantly induced HO-1 (1.5-fold
increase), whereas cyanidin exhibited this effect only at
100 lM concentration (1.2-fold increase) (79).

Examples of flavonoids include flavonols, isoflavones, fla-
vonones, and flanan-3-ols (e.g., catechins). Epidemiologic
studies have shown that green tea rich in catechins may be
protective against coronary atherosclerosis (76). In fact, green
tea consumption is usually higher in healthy subjects com-
pared with those with coronary artery disease (76), suggesting
that green tea and its polyphenols, for example, catechins, can
attenuate risk factors associated with the pathology of ath-
erosclerosis (76). The majority of catechins in green tea include
epigallocatechin-3-gallate (EGCG) (Fig. 7), which has been
shown to improve endothelial function and to induce anti-
inflammatory vascular events. Zheng et al. (154) showed that
pretreatment with EGCG inhibited the secretion of MCP-1
and the activation of activator protein-1 in porcine aortic en-
dothelial cells stimulated with TNF-a. Moreover, EGCG up-
regulated the expression of HO-1 and further induced the
secretion of bilirubin. The observed anti-inflammatory effects
of EGCG were mimicked by the HO-1 inducer cobalt proto-
porphyrin and abolished by HO-1 gene silencing.

These results are consistent with previous data show-
ing that while mRNA levels of GPx3, SOD1, and CAT
were not influenced by EGCG and theaflavin-3,39-digallate
(TF3), HO-1 was selectively upregulated by EGCG, but not
by TF3. However, inhibition of HO-1 did not diminish
polyphenol-mediated cardioprotection. While EGCG and
TF3 activated Akt, ERK1/2, and p38 MAPK, inhibition of
these kinases did not attenuate polyphenol-mediated protec-
tion. In this regard, previous studies showed that EGCG-
induced phosphorylation of Erk and Akt occurs via activation
of the mitogen-activated protein kinase-kinase (MEK) and
phosphatidylinositol-3 kinase (PI-3K) pathways, respectively
(23). Loading of cardiomyocytes with dichlorofluorescein re-
vealed that intracellular levels of ROS were significantly re-
duced after treatment with EGCG or TF3 as early as 30 min
after induction of oxidative stress. In conclusion, activation of
prosurvival signaling kinases and upregulation of antioxidant
enzymes do not play a major role in tea polyphenol-mediated
cardioprotection. In addition, EGCG inhibits STAT-1 activa-
tion and reduces cell death after cardiac ischemia/reperfusion
injury (129).

Other compounds and plant extracts

Plant lignans are a group of phenolic compounds that can
be found in diets rich in fiber. Enterolactone (Fig. 8) is a
breakdown product of plant lignans. The production of
mammalian lignans from dietary precursors by intestinal
bacteria occurs mainly in the large intestine. After removal of
methyl and hydroxyl groups in precursors, enterolactone is
absorbed from the gut into the circulation and then excreted in
urine, where enterolactone primarily exists as glucuronides
(5). Recent studies have shown that high serum enterolactone
levels reduce LDL peroxidation in vivo, assessed by serum

FIG. 7. Chemical structures of quercetin, cyanidin-3-O-
glucoside, epigallocatechin-3-gallate, and delphinidin.
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isoprostane levels (135). Enterolactone also reduced lipid per-
oxidation in vitro via direct scavenging of a hydroxyl radical (68).
This association implies a protective role of enterolactone
against oxidative injury. In addition, estrogen-like biological
effects of enterolactone have been reported, which may also
result in protection against coronary heart disease (105, 139).
Kivela et al. showed that enterolactone induced HO-1 in human
umbilical vein endothelial cells (HUVEC) in a time- and con-
centration-dependent manner (50–150 lM for 16 h) (69). Induc-
tion appeared to be mediated via the transcription factor Nrf2, as
Nrf2 siRNA abolished HO-1 induction by enterolactone. The
authors also showed that exposure to enterolactone increased
the binding of Nrf2 to the promoter region of HO-1 (69).

An attractive candidate antioxidant to treat diabetes is
magnesium lithospermate B (MLB) (Fig. 8). MLB is the active
component of the water-soluble fraction of the Chinese
medicine Danshen, a root preparation of Red Sage (Salvia
mitorrhizae) (67). MLB is an antioxidant worth further study
because of its interesting secondary effects in cells. MLB in-
hibits the enzyme aldose reductase, which is a key component
in the polyol biochemical pathway involved in the patho-
genesis of diabetic complications (67). Previous research has
shown that MLB has antifibrotic, myocardial salvage, and
neuroprotective effects (133). MLB prevents hepatitis, uremia,
and improves blood circulation, arrhythmia, and renal func-
tion (18, 40). Recent work in our laboratory showed that MLB
could prevent the development of neointimal hyperplasia in
animal models of diabetes and after balloon-induced injury.
Starting at 12 weeks, 20-week MLB treatment attenuated the
decrease in endothelium-dependent vasodilation in rats. MLB
treatment also increased the serum nitrite level and reduced
serum concentration of advanced glycation end products. The
effect of MLB was greater than an equivalent dose of a-lipoic
acid, a popular antioxidant treatment. MLB rescued the in-
hibition of eNOS activity and eNOS phosphorylation in en-

dothelial cells cultured in hyperglycemia. This effect was
dependent on Akt phosphorylation and associated with de-
creased O-linked N-acetylglucosamine protein modifica-
tion of eNOS. MLB also increased nuclear factor erythroid
2-related factor (Nrf-2) activation in a phosphoinositide 3-
kinase/Akt pathway-dependent manner. MLB treatment
induced the expression of HO-1, and previous studies dem-
onstrated that HO-1 silencing abolished the protective effect
of MLB (81).

Fraxinus rhynchophylla DENCE (Oleaceae) is a traditional
medicinal plant from East Asia (144). Diverse compounds
have been isolated from the plant. Among them, fer-
ulaldehyde and scopoletin have inhibitory activity against
induction of inducible NO synthase (66), and antitoxo-
plasmosis effect of oleuropein was reported (57). During
the course of characterizing biologically active compounds
from natural products, two major coumarins were isolated,
esculetin and fraxetin (Fig. 8). Despite numerous studies on
the inhibitory activities of natural antioxidants against LDL
oxidation, reports on the effects of coumarinoids are still
scarce. Lee et al. have shown that esculetin inhibits LDL oxi-
dation and Apo-B fragmentation (82). Low concentrations
(1–5 mM) of fraxetin potently inhibited LDL oxidation in-
duced by metal and free radicals. Moreover, treatment of
vascular smooth muscle cells with higher concentrations
(above 30 mM) of fraxetin significantly increased the protein
level of HO-1, a key enzyme that inhibits vascular prolifera-
tion and atherosclerosis. Subcellular fractionation and re-
porter gene analysis using an ARE construct revealed that
fraxetin increased the level of Nrf2 and reporter activity, and
these were associated with the induction of antioxidant en-
zymes, such as HO-1 and glutathione S-transferase-a.

Caffeic acid phenethyl ester (CAPE) (Fig. 8), a polyphenolic
compound concentrated in honeybee propolis, has been re-
ported to exhibit numerous bioactive properties, including

FIG. 8. Chemical structures of
esculetin, fraxetin, enterolactone,
caffeic acid phenethyl ester
(CAPE), and magnesium lithos-
permate B.
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antioxidant (124) and anti-inflammatory activities (96), which
may contribute to its protective effects in various patho-
physiological processes such as ischemia/reperfusion injury
(126, 142) and atherosclerosis (47). To ascertain the involve-
ment of HO-1 induction in the cytoprotective effects of CAPE
analogs, their ability to induce HO-1 at 20 lM was determined
by reverse transcriptase–polymerase chain reaction, western
blotting, and the use of HO-1 inhibitor tin protoporphyrin IX
(10–40 lM) (141). There was significant induction of HO-1 by
CAPE derivatives. Inhibition of HO-1 enzymatic activity re-
sulted in reduced cytoprotection. Modification of the catechol
ring of CAPE by introduction of fluorine at various positions
resulted in dramatic changes in cytoprotective activity. The
maintenance of at least one hydroxyl group on the CAPE
catechol ring and the phenethyl ester portion was required
for HO-1 induction. CAPE and its derivatives were screened
for their ability to scavenge intracellular ROS generated
in HUVECs by measuring 5-(and-6)-chlormethyl-2¢, 7¢-
dichlorodihydrofluorescein diacetate oxidation. The mainte-
nance of 3, 4-dihydroxyl groups on the catechol ring was
required for antioxidant activity, but antioxidant activity did
not guarantee cytoprotection. Methylation or replacement of
one hydroxyl group on the catechol ring of CAPE however
provided both pro-oxidant and cytoprotective activities.
These results indicate that the induction of HO-1 plays a more
important role in the cytoprotective activity of CAPE deriv-
atives than their direct antioxidant activity.

Critical considerations and future studies. The amount of
experimental data evidencing important properties of many
ingredients and/or bioactive substances from plants and food
plants is vast and continues to increase rapidly. The use of
terms such as nutraceuticals, functional foods, herbal extracts,
bioactive dietary constituents, phytochemicals, and similar is
becoming copious. In many cases, marketing strategies abuse
these terms and health properties are claimed while far from
scientifically demonstrated. Thus, researchers require severe
scientific objectivity in evaluating the health properties of
food ingredients. It is possible to maintain that diverse bio-
active substances from plants and food plants are promising
candidates as natural HO-1 inducers to be used in CVD.
However, some critical evaluations of the literature data are
necessary. It is important to note that the majority of studies
were conducted in cellular models, whereas few studies were
conducted on rats. Thus, the reproduction of natural HO-1
cardiovascular inducers in more relevant in vivo models is
certainly necessary. With regard to the inductive mechanism
of natural HO-1 inducers, although other pathways cannot be
excluded, it seems quite clear that the prevalent mechanism is
an ARE-mediated HO-1 gene transcription through the Nrf2/
ARE signaling pathway.

Other uncertainties derive from the fact that the referred
studies report data on natural HO-1 inducers considered both
as single chemicals and food extracts. In some cases, little or
no information was provided regarding (i) the quantitative
measurements of the proposed active compound; (ii) methods
of analysis, and (iii) extraction procedures. Obviously, these
details are essential for other researchers to reproduce the
experiments and to obtain comparable data.

When considering a possible therapeutic use of future
natural HO-1 inducer-based drugs, the amount of work yet to
be performed is even more significant. Indeed, there is largely

insufficient exhaustive information on absorption, distribu-
tion, metabolism, and excretion by main possible routes (oral,
intraperitoneal, intravenous, and intratecal). One possible
limitation of HO-1 inducers that should be taken into due
account is the concomitant reduction of the amounts of in-
tracellular heme, necessary for the assembly of many proteins,
including cytochromes (109), cyclooxygenase (86), and NO
synthase (87), and the production of ferrous iron, which can
trigger oxidative stress through to the Fenton and Haber–
Weiss reactions (3).
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Abbreviations Used

ARE¼ antioxidant-response element
BDMC¼ bis-demethoxycurcumin

bZip¼ basic leucine zipper
CAPE¼ caffeic acid phenethyl ester

CAT¼ catalase
CO¼ carbon monoxide

CVD¼ cardiovascular diseases
DMC¼demethoxycurcumin

EGCG¼ epigallocatechin-3-gallate
eNOS¼ endothelial nitric oxide synthase

ERK1/2¼ extracellular signal-regulated kinase 1/2
GPx¼ glutathione peroxidase

HO-1¼heme oxygenase-1
JNK¼ c-Jun NH2- terminal kinase

Keap1¼Kelch-like ECH-associated protein 1
MAPKs¼mitogen-activated protein kinases

MLB¼magnesium lithospermate B
NO¼nitric oxide

Nrf2¼nuclear factor erythroid 2-related factor
ROS¼ reactive oxygen species
SOD¼ superoxide dismutase
TF3¼ theaflavin-3,39-digallate

VSMCs¼vascular smooth muscle cells
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