18 research outputs found

    In vitro evaluation of pathogen inactivated platelet quality: An 8 year experience of routine use in Galicia, Spain

    Get PDF
    BACKGROUND: Platelet concentrates (PCs) treated by the pathogen inactivation technology (PI) using amotosalen and UVA illumination (PI-PCs) can be manufactured in additive solutions (PAS-III and PAS-IIIM) or in 100% Plasma. Quality control (QC) is an integral part of the production. We capitalized on our ongoing QC program to capture 8 years-worth of data on parameters related to the quality of 116,214 PI-PCs produced under different manufacturing methods. MATERIALS AND METHODS: Selected in vitro parameters of metabolism, activation, and storage were analyzed for the different manufacturing periods to compare PI-PCs versus conventional PCs (C-PCs) resuspended in different PAS. RESULTS AND DISCUSSION: All BC-PCs met quality standards for pH and dose and residual leucocytes. As expected, storage time correlated with increased lactate, LDH, Annexin V, CD62, sCD40 L levels and decreased glucose and pH. With PAS-IIIM, higher levels of glucose were observed toward the end of shelf life (p < 0.0001) with lower platelet activation markers Annexin V (p = 0.038) and CD62 (p = 0.0006). Following PI implementation, a low expire rate of <0.5% was observed. While a 2.3% mean increase in the production of PCs occurred from 2011 to 2015, the distribution of red blood cell concentrates dropped by 4.4%. A mean incidence of 0.14% for transfusion-related adverse reaction was observed while PI-PCs were distributed, similar to the one observed with C-PCs. Overall, PI-PCs prepared in additive solutions consistently met quality standards. Those prepared in PAS-IIIM appeared to have better retention of in vitro characteristics compared to PAS-III though all demonstrated functionality and clinical effectiveness

    Star-formation histories of local luminous infrared galaxies

    Get PDF
    We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and Hα\alpha of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^11.8 Lsun. We have combined new narrow-band Hα\alpha+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated Hα\alpha flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enhanced by a factor of 3-20 with respect to that occured ~1 Gyr ago. Objects with constant SFH tend to be more massive than starbursts and they are compatible with the expected properties of a main-sequence (M-S) galaxy. Likewise, the derived SFHs show that all our objects were M-S galaxies ~1 Gyr ago with stellar masses between 10^10.1 and 10^11.5 Msun. We also derived from our fits the average extinction (A_v=0.6-3 mag) and the polycyclic aromatic hydrocarbons (PAH) luminosity to L(IR) ratio (0.03-0.16). We combined the A_v with the total IR and Hα\alpha luminosities into a diagram which can be used to identify objects with rapidly changing (increasing or decreasing) SFR during the last 100 Myr.Comment: 16 pages + online material, accepted for publication in A&

    The NGC 7771+NGC 7770 minor merger: harassing the little one?

    Full text link
    This is an electronic version of an article published in Monthly Notices of the Royal Astronomical Society. Alonso-Herrero, A., Rosales-Ortega, F.F., Sånchez, S.F., Kennicutt, R.C., Pereira-Santaella, M. and Á.I. Díaz. The NGC 7771+NGC 7770 minor merger: harassing the little one? Monthly Notices of the Royal Astronomical Society 425 (2012): L46-L5

    Local Luminous Infrared Galaxies. II. AGN Activity from Spitzer/IRS spectra

    Full text link
    We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8-1000micron) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs). We decompose the Spitzer Infrared Spectrograph (IRS) low-resolution 5-38micron spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is ~62%. The derived AGN bolometric luminosities are in the range L_bol(AGN)=0.4 -50x10^{43} erg/s. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having L_bol(AGN)/L_IR<0.05. Only ~8% of local LIRGs have a significant AGN bolometric contribution L_bol(AGN)/L_IR > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies, we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for 5%^{+8%}_{-3%} of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of Omega_IR(AGN) = 3x10^5 L_sun Mpc^{-3}$ in LIRGs.Comment: 20 pages, accepted for publication in Ap

    A High Spatial Resolution Mid-Infrared Spectroscopic Study of the Nuclei and Star-Forming Regions in Luminous Infrared Galaxies

    Get PDF
    We present a high spatial (diffraction-limited) resolution (~0.3") mid-infrared (MIR) spectroscopic study of the nuclei and star-forming regions of 4 local luminous infrared galaxies (LIRGs) using T-ReCS on the Gemini South telescope. We investigate the spatial variations of the features seen in the N-band spectra of LIRGs on scales of ~100 pc, which allow us to separate the AGN emission from that of the star formation (SF). We compare our Gemini T-ReCS nuclear and integrated spectra of LIRGs with those obtained with Spitzer IRS. The 9.7um silicate absorption feature is weaker in the nuclei of the LIRGs than in the surrounding regions. This is probably due to the either clumpy or compact environment of the central AGN or young, nuclear starburst. We find that the [NeII] luminosity surface density is tightly and directly correlated with that of Pa-alpha for the LIRG star-forming regions (slope of 1.00+-0.02). Although the 11.3um PAH feature shows also a trend with Pa-alpha, this is not common for all the regions. We also find that the [NeII]\Pa-alpha ratio does not depend on the Pa-alpha equivalent width (EW), i.e., on the age of the ionizing stellar populations, suggesting that, on the scales probed here, the [NeII] emission line is a good tracer of the SF activity in LIRGs. On the other hand, the 11.3um PAH\Pa-alpha ratio increases for smaller values of the Pa-alpha EW (increasing ages), indicating that the 11.3um PAH feature can also be excited by older stars than those responsible for the Pa-alpha emission. Additional high spatial resolution observations are essential to investigate, in a statistical way, the star formation in local LIRGs at the smallest scales and to probe ultimately whether they share the same physical properties as high-z LIRGs, ULIRGs and submillimiter galaxies.Comment: 23 pages (apjstyle), 19 figures, accepted for publicacion in Ap

    Local Luminous Infrared Galaxies. I. Spatially resolved observations with Spitzer/IRS

    Get PDF
    We present results from the Spitzer/IRS spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper we investigate the spatial variations of the mid-IR emission which includes: fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission and the 9.7um silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission as well as the [NeII] and [NeIII] emissions. The behavior of the integrated PAH emission and 9.7um silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [NeIII]/[NeII] ratio tends to be located at the nuclei and its value is lower than that of HII regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [NeIII]/[NeII] ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact HII regions. In a large fraction of our sample the 11.3um PAH emission appears more extended than the dust 5.5um continuum emission. We find a dependency of the 11.3um PAH/7.7 um PAH and [NeII]/11.3um PAH ratios with the age of the stellar populations. Smaller and larger ratios respectively indicate recent star formation. The estimated warm (300 K < T < 1000 K) molecular hydrogen masses are of the order of 10^8 M_Sun, which are similar to those found in ULIRGs, local starbursts and Seyfert galaxies. Finally we find that the [NeII] velocity fields for most of the LIRGs in our sample are compatible with a rotating disk at ~kpc scales, and they are in a good agreement with H-alpha velocity fields.Comment: Comments: 52 pages, accepted for publicacion in ApJ

    The Mid-Infrared High-Ionization Lines from Active Galactic Nuclei and Star-Forming Galaxies

    Get PDF
    We used Spitzer/IRS spectroscopic data on 426 galaxies including quasars, Seyferts, LINER and HII galaxies to investigate the relationship among the mid-IR emission lines. There is a tight linear correlation between the [Ne V]14.3 um and 24.3 um (97.1 eV) and the [O IV]25.9 um (54.9 eV) high-ionization emission lines. The correlation also holds for these high-ionization emission lines and the [Ne III]15.56 um (41 eV) emission line, although only for active galaxies. We used these correlations to calculate the [Ne III] excess due to star formation in Seyfert galaxies. We also estimated the [O IV] luminosity due to star formation in active galaxies and determined that it dominates the [O IV] emission only if the contribution of the active nucleus to the total luminosity is below 5%. We find that the AGN dominates the [O IV] emission in most Seyfert galaxies, whereas star-formation adequately explains the observed [O IV] emission in optically classified HII galaxies. Finally we computed photoionization models to determine the physical conditions of the narrow line region where these high-ionization lines originate. The estimated ionization parameter range is -2.8 < log U < -2.5 and the total hydrogen column density range is 20 < log nH (cm-2) < 21.Comment: Accepted for Publication in ApJ, 19 pages, 13 figure

    A Deep Look at the Nuclear Region of UGC 5101 Through High Angular Resolution Mid-IR Data with GTC/CanariCam

    Get PDF
    We present an analysis of the nuclear infrared (IR, 1.6–18 ÎŒm) emission of the ultraluminous IR galaxy UGC 5101 to derive the properties of its active galactic nucleus (AGN) and its obscuring material. We use new mid-IR high angular resolution (0.3–0.5 arcsec) imaging using the Si-2 filter (λC = 8.7 Όm) and 7.5–13 ÎŒm spectroscopy taken with CanariCam (CC) on the 10.4 m Gran Telescopio CANARIAS. We also use archival Hubble Space Telescope/NICMOS and Subaru/COMICS imaging and Spitzer/IRS spectroscopy. We estimate the near- and mid-IR unresolved nuclear emission by modelling the imaging data with GALFIT. We decompose the Spitzer/IRS and CC spectra using a power-law component, which represents the emission due to dust heated by the AGN, and a starburst component, both affected by foreground extinction. We model the resulting unresolved near- and mid-IR, and the starburst subtracted CC spectrum with the CLUMPY torus models of Nenkova et al. The derived geometrical properties of the torus, including the large covering factor and the high foreground extinction needed to reproduce the deep 9.7 Όm silicate feature, are consistent with the lack of strong AGN signatures in the optical. We derive an AGN bolometric luminosity Lbol ~ 1.9 × 1045 erg s−1 that is in good agreement with other estimates in the literature

    Local Luminous Infrared Galaxies: Spatially resolved mid-infrared observations with Spitzer/IRS

    Get PDF
    Luminous Infrared (IR) Galaxies (LIRGs) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a GTO Spitzer IRS program aimed to obtain spectral mapping of a sample of 14 local (d<76Mpc) LIRGs. The data cubes map, at least, the central 20arcsec x 20arcsec to 30arcsec x 30arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38micron spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [NeII], [NeIII], [SIII], H_2), continuum, the 6.2 and 11.3micron PAH features, and the 9.7micron silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The IRS data are used to obtain spatially resolved measurements of the extinction using the 9.7micron silicate feature, and to trace star forming regions using the neon lines and the PAH features. We also investigate a number of AGN indicators, including the presence of high excitation emission lines and a strong dust continuum emission at around 6micron. We finally use the integrated Spitzer/IRS spectra as templates of local LIRGs. We discuss several possible uses for these templates, including the calibration of the star formation rate of IR-bright galaxies at high redshift. We also predict the intensities of the brightest mid-IR emission lines for LIRGs as a function of redshift, and compare them with the expected sensitivities of future space IR missions.Comment: Accepted for publication in Advances in Space Researc

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore