49 research outputs found

    In situ quantification of CH4 bubbling events from a peat soil using a new infrared laser spectrometer

    Get PDF
    International audienceCH4 emissions from peatlands are space- and time-dependent. The variety of efflux routes contributes to these variabilities. CH4 bubbling remains difficult to investigate since it occurs on a timescale of seconds. The aims of this study were to test the capacity of a recently built infrared high resolution spectrometer, SPIRIT (SPectrometre Infra-Rouge In situ Troposphérique), to (1) measure in situ CH4 fluxes, (2) observe online bubbling events with quantification of CH4 emission fluxes corresponding to this very sudden degassing event. Material and methods: The closed dynamic chamber method was used and the gas concentration was measured every 1.5 seconds. Emission fluxes were calculated by the accumulation rate of CH4 against time. Measurements were undertaken during daytime in March 2009 and during day- and nighttime in May 2009, in a bare peat area, temporarily forming a shallow pool. Results and discussion: The results show that the CH4 emissions estimated with the SPIRIT ranged from 2.79 to 86.0 mg CH4-C m-2 h-1. These values are consistent with those already published. The high emissions, both through diffusion and bubbling, were on the same order as the emissions estimated in natural shallow pools. During daytime, CH4 bubbling was higher in May (56.2% of the total emission) than in March (40.7%) probably because of increased CH4 production and accumulation in peat. In May, bubbling was higher at nighttime (68.6%) than in daytime (56.2%). This has an important implication for carbon budget assessment in peatlands, particularly in boreal areas. Conclusions: The recently built infrared spectrometer, SPIRIT, was able to reliably measure CH4 fluxes and quantify CH4 flux during the degassing of a bubble. The emissions obtained are in agreement with previously published data using other measurement techniques. The results of this preliminary work highlight (1) the importance of shallow pools in peatland CH4 emissions, (2) the sensitivity of such fluxes to atmospheric pressure, a relation that has not been fully investigated or taken into account in assessing peatland carbon balance

    Microbiotic soil crusts in the Sahel of Western Niger and their influence on Soil POROSITY and water dynamics

    Get PDF
    International audienceMicrobiotic soil crusts are common features of the surface of fallow land in Western Niger. We investigated the interaction between these microbial covers and the porosity and water dynamics of soils at the surface of a Sahelian landscape. The soil pore system was examined by microscopic observations and mercury porosimetry. The soil water retention capacity was measured using a Richard pressure membrane apparatus. Runoff measurements were performed in situ at a one m2 scale under natural rainfall. Samples with dense cyanobacterial cover had microbially-originated pores ranging from 0.04 and 50 ÎŒm in size. These samples also showed higher total soil porosity and retained two to four times more water than samples with thin microbial cover. These properties are closely related to the hydrophobic nature of cyanobacterial components. Final runoff values obtained on densely covered surfaces were significantly higher compared to those measured on surfaces with thin microbial cover due to the geometry of the microbially-originated pore system and its functioning

    Effects of experimental warming on carbon sink function of a temperate pristine mire : the PEATWARM project.

    Get PDF
    communication oraleInternational audienceWithin the PEATWARM project, we use Sphagnum peatlands as a model to analyse their vulnerability to climate change using an experimental system (ITEX) that simulates in situ an increase in average temperature. We aim to determine the effects of temperature increase on the vegetation, the balance of above- and belowground gas fluxes (CO2 and CH4), the microbial diversity and activity in Sphagnum mosses and in peat, and the dynamics of labile and recalcitrant organic matter of peat. The ultimate objective is the creation of a biogeochemical model of C coupled with N and S cycles that includes interactions between these key compartments

    ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales

    Get PDF
    Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5 degrees grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (V-cmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r(2) = 0.76; Nash-Sutcliffe modeling efficiency, MEF = 0.76) and ecosystem respiration (ER, r(2) = 0.78, MEF = 0.75), with lesser accuracy for latent heat fluxes (LE, r(2) = 0.42, MEF = 0.14) and and net ecosystem CO2 exchange (NEE, r(2) = 0.38, MEF = 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r(2) values (0.57-0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r(2) values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r(2) <0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized V-cmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average V-cmax value.Peer reviewe

    Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (−8 to 27 °C) and pH (3–8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 x CBTpeat + 8.07 (n = 51, R2 65 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAATpeat (°C) = 52.18 x MBT5me’ – 23.05 (n = 96, R2 67 = 0.76, RMSE = 4.7 °C). 3 These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (~ 4.7 °C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (~15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climateThis research was funded through the advanced ERC grant “the greenhouse earth system” (T-GRES, project reference 340923), awarded to RDP. All authors are part of the “T-GRES Peat Database collaborators” collective. RDP also acknowledges the Royal Society Wolfson Research Merit Award. We thank D. Atkinson for help with the sample preparation. We acknowledge support from Labex VOLTAIRE (ANR-10- 22 LABX-100-01). Peat from Patagonia and Tierra del Fuego were collected thanks to a Young Researcher Grant of the Agence National de la Recherche (ANR) to FDV, project ANR-2011-JS56-006-01 “PARAD” and with the help of Ramiro Lopez, Andrea Coronato and Veronica Pancotto (CADIC-CONICET, Ushuaia). Peat from Brazil was collected with the context of CNPq project 482815/2011-6. Samples from France (Frasne and La Guette) were collected thanks to the French Observatory of Peatlands. The Canadian peat was collected in the context of the NSERC-Discovery grant of L. Rochefort. Peats from China were obtained under a National Natural Science Foundation of China grant (No. 41372033), awarded to Y. Zheng

    Structure and dynamics of exopolymers in an intertidal diatom biofilm

    No full text
    Diatom biofilms growing at the surface of the intertidal mudflat of Marennes Oléron, France, were incubated for 48 h in the laboratory under simulated conditions of high- and low tide (immersed and emersed in seawater) and day and night (illuminated or dark conditions). The biofilms were subsequently sampled using the cryolander technique, without disturbing the structure. The samples were kept in liquid nitrogen until they were transferred to the cooled stage of a field-emission cryo-scanning electron microscope, which was used to study the structural relationships between the sediment particles, the diatoms and the different types of extracellular polymeric substances (EPS) produced by these organisms. The diatoms were most abundant at the sediment surface when incubated in the light under emersed conditions. In the dark or when immersed, the diatoms migrated into the sediment. In the light, the diatoms were coated with EPS, while this was not the case when incubated in the dark. When immersed, the sediment surface appeared smooth as the result of the deposition of mud. Under emersed conditions, the coarser silt grains were prominently present. These grains were wrapped with organic matter and bound together through threads of EPS. This was the case both in light and in dark incubated sediment. It is proposed that this latter type of EPS contributes to the increased erosion threshold of intertidal mudflats colonized by biofilms of diatoms. [KEYWORDS: epipelic diatoms ; EPS ; extracellular polymeric substances ; field emission cryo-scanning electron microscopy ; intertidal mudflats ; microphytobenthos]

    Deciphering the effect of mixed Sphagnum rubellum – Molinia caerulea on litterdecomposition through the 3D fluorescence analysis of Water ExtractableOrganic Matter.

    No full text
    International audienceSphagnum peatlands are experiencing varying perturbations, which jeopardize their ability to storevast amount of carbon. Vegetation change driven by changes in temperature and hydrology as aresult of potential/predicted climate change. Vascular plant percentage covers are expected toincrease. This will lead to changes in the relative proportion of litters reaching the soil (increase ofvascular plant litter). Thus, it implies possible litter mixture effect that did not exist before. The globalaim of this study was to study specific interactions between Sphagnum rubellum (a peat forming moss)and a vascular plant which tends to colonise many Sphagnum peatlands, Molinia caerulea. Field andlaboratory studies have shown that mixing litters of Sphagnum rubellum and Molinia caerulea has asignificant synergistic effect on the decomposition of organic matter (assessed by measuring littermass loss with time). It is not always easy to explain what factors are involved in this effect. Thespecific aim of this study was to investigate the pertinence of analysing the fluorescencecharacteristics of Water Extractable Organic Matter (WEOM) extracted from Sphagnum rubellum andMolinia caerulea litters incubated in monoculture and in mixture with PARAFAC to explain such aneffect. A primary analysis of the 3 main fluorophores showed that compared to the Sphagnum litter,the gamma fluorophore tended to increase with incubation time. This was first interpreted as anincrease of products originating from cell microbial lysis. The gamma fluorophores intensity in theWEOM from the measured mixed litters was lower than the intensity calculated from the litter inmonoculture (additive effect). This suggests that microbial biomass in Molinia caerulea litter, in theexperiment conditions, experiences lethal conditions. Mixing with Sphagnum rubellum litter preventedthis lethal effect. It is proposed that the Sphagnum rubellum litter maintain moisture conditionsfavourable to decomposition of Molinia caerulea litter. Here we present further discussion of theseresults from the PARAFAC analysis of the datase
    corecore