9 research outputs found

    UM CASO RARO DE TRIPLOIDIA NATURAL NA MOSCA-DAS-FRUTAS Anastrepha obliqua

    Get PDF
    Triploidy due to meiotic nondisjunction is a rare event in Diptera. Cytogenetic analyses performed in a population of fruit flies Anastrepha obliqua from the state of Rio Grande do Norte, northeast of Brazil, identified the occurrence of one triployd individual. This is the first case of triploidy described in the Anastrepha genus.  Samples of A. obliqua larvae were obtained from Spondias purpurea (red mombin) fruits.  A. obliqua presents a diploid value of 2n=12 observed in 29 specimens, whereas a triploid individual presented 3n=18. The triploid specimen showed three AgNOR sites and a variation from one to three nucleoli in interphase nuclei, in contrast to the two sites in the diploids. In  Anastrepha, natural triploidy is proving to be a rare event and apparently holds no evolutionary significance to the species A. obliqua.Keywords: Tephritidae; insect cytogenetics; polyploidy; northeastern Brazil.Triploidia decorrente da não disjunção meiótica são eventos incomuns em Diptera. Análises citogenéticas desenvolvidas em uma população da mosca-das-frutas Anastrepha obliqua, oriunda do Estado do Rio Grande do Norte, nordeste do Brasil identificaram a ocorrência de um indivíduo triploide. Este é o primeiro caso descrito de triploidia no gênero Anastrepha. Larvas de A. obliqua foram obtidas a partir de frutos de Spondias purpurea (ciriguela). A. obliqua apresenta um valor diploide 2n=12, presente em 29 espécimes, enquanto o indivíduo triploide apresentou 3n=18. O espécime apresenta três sítios Ag-RONs e uma variação de um a três nucléolos em núcleos interfásicos, ao contrário dos dois sítios nos diploides. No gênero Anastrepha, triploidia natural demonstra ser um evento raro e aparentemente sem significado evolutivo para a espécie A. obliqua.Palavras-chave: Tephritidae, citogenética de insetos, poliploidia, nordeste do Brasi

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Trajetórias da Educomunicação nas Políticas Públicas e a Formação de seus Profissionais

    Get PDF
    Esta obra é composta com os trabalhos apresentados no primeiro subtema, TRAJETÓRIA – Educação para a Comunicação como Política pública, nas perspectivas da Educomunicação e da Mídia-Educação, do II Congresso Internacional de Comunicação e Educação. Os artigos pretendem propiciar trocas de informações e produzir reflexões com os leitores sobre os caminhos percorridos, e ainda a percorrer, tendo como meta a expansão e a legitimação das práticas educomunicativas e/ou mídia-educativas como política pública para o atendimento à formação de crianças, adolescentes, jovens e adultos, no Brasil e no mundo

    Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil

    Get PDF
    The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    SISTEMA DE CROMOSSOMOS SEXUAIS MÚLTIPLOS X1X1X2X2/X1X2Y NA MOSCA-DAS-FRUTAS Anastrepha sororcula (DIPTERA: TEPHRITIDAE)

    No full text
    Simple sex chromosome systems are disseminated among the Tephritidae of the Anastrepha genus. Anastrepha species are tremendously important given the impact they cause in cultivated fruit plants, mostly in the northeast of Brazil. Cytogenetic analyses initiated in A. sorocula through the examination of the karyotypic structure and C-band exposed the presence of a multiple sex chromosome system X1X1X2X2/X1X2Y in this species. Whereas the female homomorphic karyotype comprises 2n=12, the male karyotype consists of 2n=11, highlighting one large unpaired Y chromosome. The level of karyotypic divergence between the A. sorocula in the northeast - with the presence of a multiple sex chromosome system - and the southeast of Brazil, suggests the existence of reproductive impairments between specimens from the two areas and a possible birth of a new species.Keywords: Alosomes; agriculture pest; insect cytogenetics; heterochromatin.Sistemas de cromossomos sexuais simples estão difundidos entre os Tephritidae do gênero Anastrepha. Espécies deste gênero apresentam enorme importância pelo impacto que causam em frutíferas cultivadas, sobretudo no nordeste do Brasil. Análises citogenéticas desenvolvidas em Anastrepha sororcula, através da análise da estrutura cariotípica e bandamento C revelaram a presença de um sistema de cromossomos sexuais múltiplos do tipo X1X1X2X2/X1X2Y nesta espécie. Enquanto as fêmeas apresentam um cariótipo homomórfico com 2n=12, os machos possuem 2n=11, onde se destaca um grande cromossomo Y despareado. O nível de divergência cariotípica da espécie A. sororcula do nordeste, com a presença de um sistema de cromossomos sexuais múltiplos, em relação às regiões central e sudeste do Brasil, podem indicar a ocorrência de impedimentos reprodutivos entre os exemplares das duas áreas e que possivelmente, como outros exemplos que existem neste gênero, A. sororcula constitua um complexo de espécies ainda não inteiramente definido.Palavras-chave: Alossomos, peste agrícola, citogenética de insetos, heterocromatina

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore