139 research outputs found

    Anadromy, potamodromy and residency in brown trout Salmo trutta: the role of genes and the environment

    Get PDF
    Brown trout Salmo trutta is endemic to Europe, western Asia, north‐western Africa and is a prominent member of freshwater and coastal marine fish faunas. The species shows two resident (river‐resident, lake‐resident) and three main facultative migratory life histories (downstream–upstream within a river system, fluvial–adfluvial potamodromous; to and from a lake, lacustrine–adfluvial (inlet)–allucustrine (outlet) potamodromous; to and from the sea, anadromous). River‐residency v. migration is a balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Fluvial–adfluvial migration usually has less feeding improvement, but less mortality risk, than lacustrine–adfluvial–allacustrine and anadromous, but the latter vary among catchments as to which is favoured. Indirect evidence suggests that around 50% of the variability in S. trutta migration v. residency, among individuals within a population, is due to genetic variance. This dichotomous decision can best be explained by the threshold‐trait model of quantitative genetics. Thus, an individual's physiological condition (e.g., energy status) as regulated by environmental factors, genes and non‐genetic parental effects, acts as the cue. The magnitude of this cue relative to a genetically predetermined individual threshold, governs whether it will migrate or sexually mature as a river‐resident. This decision threshold occurs early in life and, if the choice is to migrate, a second threshold probably follows determining the age and timing of migration. Migration destination (mainstem river, lake, or sea) also appears to be genetically programmed. Decisions to migrate and ultimate destination result in a number of subsequent consequential changes such as parr–smolt transformation, sexual maturity and return migration. Strong associations with one or a few genes have been found for most aspects of the migratory syndrome and indirect evidence supports genetic involvement in all parts. Thus, migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction. Knowledge of genetic determinants of the various components of migration in S. trutta lags substantially behind that of Oncorhynchus mykiss and other salmonids. Identification of genetic markers linked to migration components and especially to the migration–residency decision, is a prerequisite for facilitating detailed empirical studies. In order to predict effectively, through modelling, the effects of environmental changes, quantification of the relative fitness of different migratory traits and of their heritabilities, across a range of environmental conditions, is also urgently required in the face of the increasing pace of such changes

    A review of tennis racket performance parameters

    Get PDF
    The application of advanced engineering to tennis racket design has influenced the nature of the sport. As a result, the International Tennis Federation has established rules to limit performance, with the aim of protecting the nature of the game. This paper illustrates how changes to the racket affect the player-racket system. The review integrates engineering and biomechanical issues related to tennis racket performance, covering the biomechanical characteristics of tennis strokes, tennis racket performance, the effect of racket parameters on ball rebound and biomechanical interactions. Racket properties influence the rebound of the ball. Ball rebound speed increases with frame stiffness and as string tension decreases. Reducing inter-string contacting forces increases rebound topspin. Historical trends and predictive modelling indicate swingweights of around 0.030–0.035 kg/m2 are best for high ball speed and accuracy. To fully understand the effect of their design changes, engineers should use impact conditions in their experiments, or models, which reflect those of actual tennis strokes. Sports engineers, therefore, benefit from working closely with biomechanists to ensure realistic impact conditions

    Discovery of Two Distant Type Ia Supernovae in the Hubble Deep Field North with the Advanced Camera for Surveys

    Get PDF
    We present observations of the first two supernovae discovered with the recently installed Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The supernovae were found in Wide Field Camera images of the Hubble Deep Field North taken with the F775W, F850LP, and G800L optical elements as part of the ACS guaranteed time observation program. Spectra extracted from the ACS G800L grism exposures confirm that the objects are Type Ia supernovae (SNe Ia) at redshifts z=0.47 and z=0.95. Follow-up HST observations have been conducted with ACS in F775W and F850LP and with NICMOS in the near-infrared F110W bandpass, yielding a total of 9 flux measurements in the 3 bandpasses over a period of 50 days in the observed frame. We discuss many of the important issues in doing accurate photometry with the ACS. We analyze the multi-band light curves using two different fitting methods to calibrate the supernovae luminosities and place them on the SNe Ia Hubble diagram. The resulting distances are consistent with the redshift-distance relation of the accelerating universe model, although evolving intergalactic grey dust remains as a less likely possibility. The relative ease with which these SNe Ia were found, confirmed, and monitored demonstrates the potential ACS holds for revolutionizing the field of high-redshift SNe Ia, and therefore of testing the accelerating universe cosmology and constraining the "epoch of deceleration".Comment: 11 pages, 8 embedded figures. Accepted for publication in Ap

    Molecular mechanism for kinesin-1 direct membrane recognition

    Get PDF
    The cargo-binding capabilities of cytoskeletal motor proteins have expanded during evolution through both gene duplication and alternative splicing. For the light chains of the kinesin-1 family of microtubule motors, this has resulted in an array of carboxyl-terminal domain sequences of unknown molecular function. Here, combining phylogenetic analyses with biophysical, biochemical, and cell biology approaches, we identify a highly conserved membrane-induced curvature-sensitive amphipathic helix within this region of a subset of long kinesin light-chain paralogs and splice isoforms. This helix mediates the direct binding of kinesin-1 to lipid membranes. Membrane binding requires specific anionic phospholipids, and it contributes to kinesin-1\u2013dependent lysosome positioning, a canonical activity that, until now, has been attributed exclusively the recognition of organelle-associated cargo adaptor proteins. This leads us to propose a protein-lipid coincidence detection framework for kinesin-1\u2013mediated organelle transport

    Strong Lensing Analysis of A1689 from Deep Advanced Camera Images

    Full text link
    We analyse deep multi-colour Advanced Camera images of the largest known gravitational lens, A1689. Radial and tangential arcs delineate the critical curves in unprecedented detail and many small counter-images are found near the center of mass. We construct a flexible light deflection field to predict the appearance and positions of counter-images. The model is refined as new counter-images are identified and incorporated to improve the model, yielding a total of 106 images of 30 multiply lensed background galaxies, spanning a wide redshift range, 1.0<<z<<5.5. The resulting mass map is more circular in projection than the clumpy distribution of cluster galaxies and the light is more concentrated than the mass within r<50kpc/hr<50kpc/h. The projected mass profile flattens steadily towards the center with a shallow mean slope of dlog⁥Σ/dlog⁥r≃−0.55±0.1d\log\Sigma/d\log r \simeq -0.55\pm0.1, over the observed range, r<250kpc/h<250kpc/h, matching well an NFW profile, but with a relatively high concentration, Cvir=8.2−1.8+2.1C_{vir}=8.2^{+2.1}_{-1.8}. A softened isothermal profile (rcore=20±2r_{core}=20\pm2\arcs) is not conclusively excluded, illustrating that lensing constrains only projected quantities. Regarding cosmology, we clearly detect the purely geometric increase of bend-angles with redshift. The dependence on the cosmological parameters is weak due to the proximity of A1689, z=0.18z=0.18, constraining the locus, ΩM+ΩΛ≀1.2\Omega_M+\Omega_{\Lambda} \leq 1.2. This consistency with standard cosmology provides independent support for our model, because the redshift information is not required to derive an accurate mass map. Similarly, the relative fluxes of the multiple images are reproduced well by our best fitting lens model.Comment: Accepted by ApJ. For high quality figures see http://wise-obs.tau.ac.il/~kerens/A168

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A&gt;T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Where the Lake Meets the Sea: Strong Reproductive Isolation Is Associated with Adaptive Divergence between Lake Resident and Anadromous Three-Spined Sticklebacks

    Get PDF
    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean F-ST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone
    • 

    corecore