39 research outputs found

    The Earth as an extrasolar transiting planet - II: HARPS and UVES detection of water vapor, biogenic O2_2, and O3_3

    Full text link
    The atmospheric composition of transiting exoplanets can be characterized during transit by spectroscopy. For the transit of an Earth twin, models predict that biogenic O2O_2 and O3O_3 should be detectable, as well as water vapour, a molecule linked to habitability as we know it on Earth. The aim is to measure the Earth radius versus wavelength λ\lambda - or the atmosphere thickness h(λ)h(\lambda) - at the highest spectral resolution available to fully characterize the signature of Earth seen as a transiting exoplanet. We present observations of the Moon eclipse of 21-12-2010. Seen from the Moon, the Earth eclipses the Sun and opens access to the Earth atmosphere transmission spectrum. We used HARPS and UVES spectrographs to take penumbra and umbra high-resolution spectra from 3100 to 10400 Ang. A change of the quantity of water vapour above the telescope compromised the quality of the UVES data. We corrected for this effect in the data processing. We analyzed the data by 3 different methods. The 1st method is based on the analysis of pairs of penumbra spectra. The 2nd makes use of a single penumbra spectrum, and the 3rd of all penumbra and umbra spectra. Profiles h(λ)h(\lambda) are obtained with the three methods for both instruments. The 1st method gives the best result, in agreement with a model. The second method seems to be more sensitive to the Doppler shift of solar spectral lines with respect to the telluric lines. The 3rd method makes use of umbra spectra which bias the result, but it can be corrected for this a posteriori from results with the first method. The 3 methods clearly show the spectral signature of the Rayleigh scattering in the Earth atmosphere and the bands of H2_2O, O2_2, and O3_3. Sodium is detected. Assuming no atmospheric perturbations, we show that the E-ELT is theoretically able to detect the O2O_2 A-band in 8~h of integration for an Earth twin at 10pc.Comment: Final version accepted for publication in A&A - 21 pages, 27 figures. Abstract above slightly shortened wrt the original. The ArXiv version has low resolution figures, but a version with full resolution figures is available here: http://www.obs-hp.fr/~larnold/publi_to_download/eclipse2010_AA_v5_final.pd

    Terahertz Time-Domain Magnetospectroscopy of a High-Mobility Two-Dimensional Electron Gas

    Full text link
    We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spectroscopy, which can recover the true linewidth of cyclotron resonance in a high-mobility (>106cm2V1s1>{10}^{6} \mathrm{cm^{2} V^{-1} s^{-1}}) sample without being affected by the saturation effect.Comment: 4 pages, 3 figure

    On the conveyance of angular momentum in electronic energy transfer

    Get PDF
    When electronic excitation transfer occurs, it is of considerable interest to establish whether angular momentum can also be conveyed in the process. The question is prompted by a consideration that when the participating chromophores are atoms, ions, or molecular systems having high local symmetry, the electronic excited states that are involved are generally characterized not only by energy, but by angular momentum properties. Moreover, it is known that electron spin can be communicated between quantum dot exciton states. Resolving the general issue entails an electrodynamic representation exploiting irreducible tensor methods, the analysis being illustrated by application to energy transfer associated with a variety of multipolar transitions. The results exhibit novel connections between an angular momentum content of the electromagnetic coupling and a strongly varying distance dependence. It is concluded that the communication of angular momentum does not in general map unambiguously between a donor and energy acceptor

    Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals

    Full text link
    Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the embedded magnetic atoms. In this respect, colloidal nanocrystal heterostructures provide great flexibility via growth-controlled `engineering' of electron and hole wavefunctions within individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d exchange interaction between electron-hole excitations (excitons) and paramagnetic manganese ions using `inverted' core-shell nanocrystals composed of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe. Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the band-edge exciton that, surprisingly, are tunable in both magnitude and sign. Effective exciton g-factors are controllably tuned from -200 to +30 solely by increasing the CdSe shell thickness, demonstrating that strong quantum confinement and wavefunction engineering in heterostructured nanocrystal materials can be utilized to manipulate carrier-Mn wavefunction overlap and the sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf

    Quantum Computation with Quantum Dots

    Full text link
    We propose a new implementation of a universal set of one- and two-qubit gates for quantum computation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed within a newly derived spin master equation incorporating decoherence caused by a prototypical magnetic environment. Dot-array experiments which would provide an initial demonstration of the desired non-equilibrium spin dynamics are proposed.Comment: 12 pages, Latex, 2 ps figures. v2: 20 pages (very minor corrections, substantial expansion), submitted to Phys. Rev.

    Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"

    Full text link
    ``EIT waves" are large-scale coronal bright fronts (CBFs) that were first observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}. Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100--700 km s1^{-1} with front widths of 50-100 Mm. As their speed is greater than the quiet coronal sound speed (csc_s\leq200 km s1^{-1}) and comparable to the local Alfv\'{e}n speed (vAv_A\leq1000 km s1^{-1}), they were initially interpreted as fast-mode magnetoacoustic waves (vf=(cs2+vA2)1/2v_{f}=(c_s^2 + v_A^2)^{1/2}). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure

    Influence of elevated radiative lifetime on efficiency of CdSe/CdTe Type II colloidal quantum dot based solar cells

    Get PDF
    Colloidal quantum dots (CQDs) are promising materials for solar cells because their optoelectronic properties are easily adjusted by control of their size, structure and composition. We present calculations of the band gap and radiative lifetime for varying core diameter and shell thickness of CdSe/CdTe core/shell Type II CQDs using a combination of single particle (2,6)-band k·pk·p and many-electron configuration interaction (CI) Hamiltonians. These calculations are validated by comparison with experimental absorption spectra and photoluminescence decay data. The results are then incorporated into a model of photovoltaic efficiency which demonstrates how the overall performance of a solar cell based on Type II CQDs is affected by changes in the core/shell geometry. The largest effect on photovoltaic efficiency is found to be due to the longer radiative lifetime produced by increasing the shell thickness

    Robustness of VSL Values from Contingent Valuation Surveys

    Full text link
    corecore