527 research outputs found

    stairs and fire

    Get PDF

    Efeito da rápida austenitização sobre as propriedades mecânicas de um aço SAE1045.

    No full text
    Estudou-se o efeito da rápida austenitização sobre as propriedades mecânicas de um aço SAE 1045, na condição de temperado e revenido a 600ºC. A microestrutura das amostras austenitizadas a 900 e 950ºC e temperadas imediatamente ao atingir essas temperaturas, têm a microestrutura constituída de martensita refinada, com pequena fração volumétrica de ferrita poligonal e ferrita acicular. Os valores dos limites de resistência e escoamento das amostras revenidas são fortemente dependentes do tempo de encharque. As transformações fases no revenimento têm efeitos similares sobre os limites de resistência e escoamento das amostras revenidas. Tais amostras têm altos valores da razão de escoamento (valor médio de 0,91). Os valores do produto do limite de resistência pelo alongamento percentual variaram de 32589MPa.% a 24150MPa.%. A otimização das propriedades mecânicas do aço SAE1045, com alta resistência mecânica e boa ductilidade, foi obtida com austenitização a 900ºC, têmpera imediatamente após atingir essa temperatura e revenimento a 600ºC por 100s.This work studied the effect of fast austenitization on the mechanical properties of SAE1045 steel, as quenched and tempered. The samples austenitized at 900 and 950ºC, and immediately quenched after reaching these temperatures, showed microstructures of refined martensite, with small volume fractions of polygonal and acicular ferrites. The values of the tensile and yield strengths of the tempered samples are strongly dependent on the soaking time. The phase transformations during the tempering have similar effects on the tensile and yield strengths of the tempered samples. These samples have high yield ratio values (average of 0.91). The values of the product of the tensile strength for the percent elongation varied from 32589MPa% to 24150MPa%. The optimization of the mechanical properties of the SAE1045 steel, with high strength and ductility, was achieved for the austenitization at 900ºC, immediately quenched after reaching that temperature, and tempering at 600ºC for 100s

    Search for narrow resonances using the dijet mass spectrum in pp collisions at s√=8  TeV

    Get PDF
    Results are presented of a search for the production of new particles decaying to pairs of partons (quarks, antiquarks, or gluons), in the dijet mass spectrum in proton-proton collisions at s√=8  TeV. The data sample corresponds to an integrated luminosity of 4.0  fb−1, collected with the CMS detector at the LHC in 2012. No significant evidence for narrow resonance production is observed. Upper limits are set at the 95% confidence level on the production cross section of hypothetical new particles decaying to quark-quark, quark-gluon, or gluon-gluon final states. These limits are then translated into lower limits on the masses of new resonances in specific scenarios of physics beyond the standard model. The limits reach up to 4.8 TeV, depending on the model, and extend previous exclusions from similar searches performed at lower collision energies. For the first time mass limits are set for the Randall–Sundrum graviton model in the dijet channel

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger.Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger
    corecore