241 research outputs found

    Fruit and Vegetable Bucks: Adams County Grocery Store Snap Incentive Program

    Full text link
    Veggie Bucks provides a 50% discount on all fresh fruits and vegetables sold through Kennie’s Market produce department at the point of sale for the 5 highest cost items. The incentive period ran January - April, 2017. Intended outcomes include an increase in the number of fresh fruits and vegetables purchased by SNAP recipients at Kennie’s Market locations in Biglerville and Gettysburg by 10% in January-April 2017 compared to baseline figures obtained in 2016, and to familiarize SNAP recipients with fresh fruits and vegetables and to provide information about the ACFMA markets’ Double Dollars program. SNAP recipients were invited to sign up for the program upon showing their ID and EBT card and were provided a Kennie\u27s Frequent Shopper card if they did not have one already

    Motivational interviewing for screening and feedback and encouraging lifestyle changes to reduce relative weight in 4-8 year old children: design of the MInT study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because parental recognition of overweight in young children is poor, we need to determine how best to inform parents that their child is overweight in a way that enhances their acceptance and supports motivation for positive change. This study will assess 1) whether weight feedback delivered using motivational interviewing increases parental acceptance of their child's weight status and enhances motivation for behaviour change, and 2) whether a family-based individualised lifestyle intervention, delivered primarily by a MInT mentor with limited support from "expert" consultants in psychology, nutrition and physical activity, can improve weight outcomes after 12 and 24 months in young overweight children, compared with usual care.</p> <p>Methods/Design</p> <p>1500 children aged 4-8 years will be screened for overweight (height, weight, waist, blood pressure, body composition). Parents will complete questionnaires on feeding practices, physical activity, diet, parenting, motivation for healthy lifestyles, and demographics. Parents of children classified as overweight (BMI ≥ CDC 85<sup>th</sup>) will receive feedback about the results using Motivational interviewing or Usual care. Parental responses to feedback will be assessed two weeks later and participants will be invited into the intervention. Additional baseline measurements (accelerometry, diet, quality of life, child behaviour) will be collected and families will be randomised to Tailored package or Usual care. Parents in the Usual care condition will meet once with an advisor who will offer general advice regarding healthy eating and activity. Parents in the Tailored package condition will attend a single session with an "expert team" (MInT mentor, dietitian, physical activity advisor, clinical psychologist) to identify current challenges for the family, develop tailored goals for change, and plan behavioural strategies that best suit each family. The mentor will continue to provide support to the family via telephone and in-person consultations, decreasing in frequency over the two-year intervention. Outcome measures will be obtained at baseline, 12 and 24 months.</p> <p>Discussion</p> <p>This trial offers a unique opportunity to identify effective ways of providing feedback to parents about their child's weight status and to assess the efficacy of a supportive, individualised early intervention to improve weight outcomes in young children.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry ACTRN12609000749202</p

    Tracking down carbon inputs underground from an arid zone Australian calcrete.

    Get PDF
    Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota

    Programmed DNA elimination of germline development genes in songbirds

    Get PDF
    In some eukaryotes, germline and somatic genomes differ dramatically in their composition. Here we characterise a major germline–soma dissimilarity caused by a germline-restricted chromosome (GRC) in songbirds. We show that the zebra finch GRC contains >115 genes paralogous to single-copy genes on 18 autosomes and the Z chromosome, and is enriched in genes involved in female gonad development. Many genes are likely functional, evidenced by expression in testes and ovaries at the RNA and protein level. Using comparative genomics, we show that genes have been added to the GRC over millions of years of evolution, with embryonic development genes bicc1 and trim71 dating to the ancestor of songbirds and dozens of other genes added very recently. The somatic elimination of this evolutionarily dynamic chromosome in songbirds implies a unique mechanism to minimise genetic conflict between germline and soma, relevant to antagonistic pleiotropy, an evolutionary process underlying ageing and sexual traits

    Multi-ancestry meta-analysis of tobacco use disorder prioritizes novel candidate risk genes and reveals associations with numerous health outcomes

    Get PDF
    Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviors, and although strides have been made using genome-wide association studies (GWAS) to identify risk variants, the majority of variants identified have been for nicotine consumption, rather than TUD. We leveraged five biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records, EHR) in 898,680 individuals (739,895 European, 114,420 African American, 44,365 Latin American). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviors in children, and hundreds of medical outcomes, including HIV infection, heart disease, and pain. This work furthers our biological understanding of TUD and establishes EHR as a source of phenotypic information for studying the genetics of TUD

    The Adjuvanticity of an O. volvulus-Derived rOv-ASP-1 Protein in Mice Using Sequential Vaccinations and in Non-Human Primates

    Get PDF
    Adjuvants potentiate antigen-specific protective immune responses and can be key elements promoting vaccine effectiveness. We previously reported that the Onchocerca volvulus recombinant protein rOv-ASP-1 can induce activation and maturation of naïve human DCs and therefore could be used as an innate adjuvant to promote balanced Th1 and Th2 responses to bystander vaccine antigens in mice. With a few vaccine antigens, it also promoted a Th1-biased response based on pronounced induction of Th1-associated IgG2a and IgG2b antibody responses and the upregulated production of Th1 cytokines, including IL-2, IFN-γ, TNF-α and IL-6. However, because it is a protein, the rOv-ASP-1 adjuvant may also induce anti-self-antibodies. Therefore, it was important to verify that the host responses to self will not affect the adjuvanticity of rOv-ASP-1 when it is used in subsequent vaccinations with the same or different vaccine antigens. In this study, we have established rOv-ASP-1's adjuvanticity in mice during the course of two sequential vaccinations using two vaccine model systems: the receptor-binding domain (RBD) of SARS-CoV spike protein and a commercial influenza virus hemagglutinin (HA) vaccine comprised of three virus strains. Moreover, the adjuvanticity of rOv-ASP-1 was retained with an efficacy similar to that obtained when it was used for a first vaccination, even though a high level of anti-rOv-ASP-1 antibodies was present in the sera of mice before the administration of the second vaccine. To further demonstrate its utility as an adjuvant for human use, we also immunized non-human primates (NHPs) with RBD plus rOv-ASP-1 and showed that rOv-ASP-1 could induce high titres of functional and protective anti-RBD antibody responses in NHPs. Notably, the rOv-ASP-1 adjuvant did not induce high titer antibodies against self in NHPs. Thus, the present study provided a sound scientific foundation for future strategies in the development of this novel protein adjuvant

    Observations and models to support the first Marine Ecosystem Assessment for the Southern Ocean (MEASO)

    Get PDF
    Assessments of the status and trends of habitats, species and ecosystems are needed for effective ecosystem-based management in marine ecosystems. Knowledge on imminent ecosystem changes (climate change impacts) set in train by existing climate forcings are needed for adapting management practices to achieve conservation and sustainabililty targets into the future. Here, we describe a process for enabling a marine ecosystem assessment (MEA) by the broader scientific community to support managers in this way, using a MEA for the Southern Ocean (MEASO) as an example. We develop a framework and undertake an audit to support a MEASO, involving three parts. First, we review available syntheses and assessments of the Southern Ocean ecosystem and its parts, paying special attention to building on the SCAR Antarctic Climate Change and Environment report and the SCAR Biogeographic Atlas of the Southern Ocean. Second, we audit available field observations of habitats and densities and/or abundances of taxa, using the literature as well as a survey of scientists as to their current and recent activities. Third, we audit available system models that can form a nested ensemble for making, with available data, circumpolar assessments of habitats, species and food webs. We conclude that there is sufficient data and models to undertake, at least, a circumpolar assessment of the krill-based system. The auditing framework provides the basis for the first MEASO but also provides a repository (www.SOKI.aq/display/MEASO) for easily amending the audit for future MEASOs. We note that an important outcome of the first MEASO will not only be the assessment but also to advise on priorities in observations and models for improving subsequent MEASOs

    Low-frequency variation near common germline susceptibility loci are associated with risk of Ewing sarcoma

    Get PDF
    Background: Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 common germline susceptibility loci but have not investigated low-frequency inherited variants with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor. Methods We investigated the contribution of rare and low-frequency variation to EwS susceptibility in the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaffected controls of European ancestry). Results We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20 that were associated with EwS risk (OR = 0.186 and 2.038, respectively;P-value < 5x10(-8)) and located near previously reported common susceptibility loci. After adjusting for the most associated common variant at the locus, only rs112837127 remained a statistically significant independent signal (OR = 0.200, P-value = 5.84x10(-8)). Conclusions: These findings suggest rare variation residing on common haplotypes are important contributors to EwS risk. Impact Motivate future targeted sequencing studies for a comprehensive evaluation of low-frequency and rare variation around common EwS susceptibility loci

    A Mouse Model of the Human Fragile X Syndrome I304N Mutation

    Get PDF
    The mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA–binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5′UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein. Moreover, antisense transcripts (FMR4, ASFMR1) in the same locus have been reported to be silenced by the repeat expansion. Missense mutations offer one means of confirming a central role for FMRP in the disease, but to date, only a single such patient has been described. This patient harbors an isoleucine to asparagine mutation (I304N) in the second FMRP KH-type RNA–binding domain, however, this single case report was complicated because the patient harbored a superimposed familial liver disease. To address these issues, we have generated a new Fragile X Syndrome mouse model in which the endogenous Fmr1 gene harbors the I304N mutation. These mice phenocopy the symptoms of Fragile X Syndrome in the existing Fmr1–null mouse, as assessed by testicular size, behavioral phenotyping, and electrophysiological assays of synaptic plasticity. I304N FMRP retains some functions, but has specifically lost RNA binding and polyribosome association; moreover, levels of the mutant protein are markedly reduced in the brain specifically at a time when synapses are forming postnatally. These data suggest that loss of FMRP function, particularly in KH2-mediated RNA binding and in synaptic plasticity, play critical roles in pathogenesis of the Fragile X Syndrome and establish a new model for studying the disorder
    corecore