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ABSTRACT [148/150 words] 

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic 

factors influence smoking behaviors, and although strides have been made using genome-wide 

association studies (GWAS) to identify risk variants, the majority of variants identified have been 

for nicotine consumption, rather than TUD. We leveraged five biobanks to perform a multi-

ancestral meta-analysis of TUD (derived via electronic health records, EHR) in 898,680 

individuals (739,895 European, 114,420 African American, 44,365 Latin American). We 

identified 88 independent risk loci; integration with functional genomic tools uncovered 461 

potential risk genes, primarily expressed in the brain. TUD was genetically correlated with 

smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviors in 

children, and hundreds of medical outcomes, including HIV infection, heart disease, and pain. 

This work furthers our biological understanding of TUD and establishes EHR as a source of 

phenotypic information for studying the genetics of TUD.  
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Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world, 

with 85% of smokers meeting criteria for TUD (also known as nicotine dependence).1,2 TUD is a 

problematic pattern of tobacco use that leads to clinically significant impairment or distress.2 

Nicotine dependent individuals often experience withdrawal symptoms when they stop smoking. 

As a result, they often have substantial difficulty quitting and continue to smoke despite negative 

mental, social, and medical consequences. Tobacco smoking is the leading cause of 

preventable death worldwide, causing 6 million annual premature deaths,3 and is also highly 

associated with other worldwide leading contributors of morbidity and mortality, including lung 

cancer, chronic obstructive pulmonary disease, cardiovascular disease, mood disorders, and 

other substance use disorders.4–6 Unfortunately, available preventative and treatment options 

for TUD have low success rates.7 

Genetic factors influence smoking behaviors, with twin-heritability estimates ranging 

from ~30-70%.8–12 Recently, genome-wide association studies (GWAS) have expanded in size 

(N~2.5M) and yielded hundreds of novel loci for smoking-related behaviors (summarized in 

Supplementary Table 1), primarily for nicotine consumption.13 These GWAS have revealed 

pervasive pleiotropy, with Mendelian randomization (MR) analyses highlighting potential causal 

effects of regular tobacco smoking on health outcomes (e.g., cardiovascular health,14 cancer 

risk,14 bone mineral density15), numerous other substance use disorders (e.g., alcohol,14 

cannabis16 and opioid use disorders17), and psychiatric and related conditions (e.g., major 

depressive disorder,18 suicide-related behaviors,19 loneliness20). 

While these studies have been immensely successful, they have not focused on TUD 

itself, which consists of multiple components that begin with smoking initiation and regular use, 

and develop into problematic use, dependence, cessation, and relapse. As a result, relatively 

little is known about the specific genes that confer risk for the development of TUD and 

associated conditions. One of the major roadblocks to progress in identifying risk-conferring 
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genes has been the lack of sufficiently large samples with misuse phenotypes. This is an 

important limitation because prior studies have shown that the genetic architecture of substance 

use is largely different from that of misuse21–26. The largest GWAS of nicotine dependence, 

comprising 58,000 European- and African-ancestry smokers, using the self-reported Fagerström 

Test for Nicotine Dependence (FTND), identified only five loci.27 In addition, while there have 

been nicotine dependence GWAS in individuals of ancestries other than European28 

(Supplementary Table 1 for full list), sample sizes for diverse populations have been limited 

(N<12K). 

The use of electronic health records (EHR) is a relatively untapped, cost-effective 

strategy for characterizing smoking-related phenotypes, including TUD. EHR-defined TUD 

generally relies on International Classification of Disease (ICD) diagnostic codes, which can be 

aggregated into “phecodes” that require the presence of an ICD code on two or more separate 

visits. TUD diagnostic codes are effective identifiers of smoking status.29 A key consideration, 

and the one we examine in this study, is the utility of TUD phecodes for use in large-scale 

GWAS to boost power and improve our ability to identify novel loci for TUD.29–31 To address this 

question, we performed a multi-ancestral meta-analysis of TUD comprising 898,680 individuals 

of European (EUR), African American (AA) and Latin American (LA) ancestry recruited from 

multiple biobanks within the PsycheMERGE network32 (Vanderbilt University Medical Center’s 

biobank, BioVU, NEUR=46,905; Mass General Brigham Biobank, MGBB, NEUR=22,268; Penn 

Medicine BioBank, PMBB,33 NEUR=28,999, NAA=10,088; Million Veteran Program, MVP, 

NEUR=396,833, NAA=104,332, NLA=44,365), and combined with existing data from the UK 

Biobank (UKBB, NEUR=244,890), which used a less stringent definition. In secondary analyses, 

we further characterized the genetic architecture of TUD, examined pleiotropy with other 

psychiatric and medical outcomes, and harnessed the data to reveal new potential medications 

for treating this serious psychiatric condition. 
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Results 

Cohort and Phenotype Descriptions. We included individuals from eight cohorts across five 

different sites (Figure 1a for an overview of the cohorts; Supplementary Table 2 for sample 

sizes). The methods to ascertain cases were identical for seven of these cohorts. Individuals 

were identified as cases if they met criteria for a TUD phecode (a TUD ICD9 or ICD10 code on 

two or more separate visits, described in Supplementary Table 3); controls were screened for 

the absence of a TUD diagnostic code. We benchmarked the TUD-EHR definition against self-

reported smoking questionnaire data and other comorbid ICD codes (Supplementary Table 4). 

Across contributing biobanks, cases were enriched for ever smokers (92-99%), with only a 

minor proportion (<2%) of cases self-identifying as never-smokers (Supplementary Table 5). In 

contrast, a smaller proportion of controls were ever smokers (17-56%), with a larger proportion 

self-identifying as never-smokers (39-73%). Attempts at smoking cessation were reported by 

15-25% of controls and 65-95% of cases. Controls were comparable to cases on age and sex 

but reported much lower prevalences of other substance and psychiatric disorders than cases. 

Thus, almost all TUD cases have evidence of being either former or current smokers based on 

available self-report data. 
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Figure 1. Overview of the cohorts and analysis pipeline (a) and genetic correlations 

among the sites (b). (a) We conducted independent GWAS of TUD cases and controls in 

individuals of European (EUR) ancestry across four PsycheMERGE sites (BioVU, MGBB, 

PMBB, and MVP) and performed a GWAS meta-analysis (“TUD-EUR”); these summary results 

were used for all secondary analyses. For African American (AA), we conducted GWAS meta-

analysis of TUD cases and controls from the PMBB and MVP cohorts (“TUD-AA”). For Latin 

American (LA), we conducted GWAS of TUD cases and controls from the MVP cohort. Next, we 

performed a multi-ancestral GWAS meta-analysis (“TUD-multi”), which combined the results 

from all seven cohorts. We also obtained summary statistics from UKBB, which used a less 

stringent case definition in individuals of EUR ancestry and performed a GWAS meta-analysis 

within EUR individuals (“TUD-EUR+UKBB”) and across ancestries (“TUD-multi+UKBB”). 

Supplementary Table 2 summarizes the datasets used for the analyses. We subjected the 

TUD-EUR summary statistics to several secondary analyses to characterize the genetic 

architecture of TUD. (b) LDSC genetic correlations (rg) for TUD between EUR sites were 

positive and high, ranging from 0.51 to unity, with most confidence intervals overlapping 

(Supplementary Figure 1). LDSC genetic correlation for TUD between the two AA samples 

was strongly positive (rg=0.93) but not significant (p=0.45). LDSC SNP-heritability estimates 

(h2
SNP 5-15%) are shown in the diagonal. UKBB=UK Biobank, BioVU=Vanderbilt University 

Medical Center’s biobank, MGBB=Mass General Brigham Biobank, PMBB=Penn Medicine 

Biobank, MVP=Million Veteran Program.  

 

Significant SNP-heritability and genetic correlations across sites. After applying similar 

data quality controls, we conducted within-cohort association analyses using logistic regression 

and relevant covariates (Methods). We estimated the proportion of variance attributable to the 

measured common variants (SNP-heritability, h2
SNP) to be ~5-15% (based on liability scale, 

assuming a lifetime risk of 12.5%; Figure 1b, Supplementary Table 6), which is consistent with 

prior nicotine-related GWAS.13,27 Genetic correlations across sites and ancestries were mostly 

high and positive (rg>0.51, p<1.56E-02, EUR sites; rg=0.93, p=0.45, AA sites; cross-ancestry 

rgs=0.74-0.84, p<3.90E-04; Figure 1b, Supplementary Table 6), serving as the basis for 
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ancestry-specific and multi-ancestry meta-analyses, and suggesting that the genetic 

architecture of TUD is similar across ancestries.  

Multi-ancestry meta-analyses implicate biological underpinnings of TUD. The 

primary multi-ancestry meta-analysis of 20,801,211 imputed SNPs (lambda λGC=1.141, Figure 

2) was performed on seven cohorts, comprising 653,790 individuals, with 75.71% EUR, 17.50% 

AA, and 6.79% LA.  

We identified 120 GWS (p<5.00E-08) lead SNPs (r2<0.1) located in 88 independent loci 

(Supplementary Table 7). All genome-wide significant loci had been reported by prior smoking 

GWAS (Supplementary Table 7), including aspects of smoking initiation (88/88), age of 

initiation (14/88), consumption (38/88), cessation (48/88) and nicotine dependence (1/88; 

Supplementary Figure 2, Supplementary Figure 3). While all these loci were recently 

discovered in a GWAS of 3.4 million individuals in the GSCAN study,13 here we reproduce some 

of the GSCAN findings with a considerably smaller sample size (Supplementary Figure 3).  

Our analyses provide corroborative support for nicotinic acetylcholine receptor genes as 

risk genes for smoking-related traits: CHRNA5 (rs576982, p=3.40E-19, chr. 15; this region 

includes rs16969968, a well-established functional missense polymorphism [D398N] in 

CHRNA5, p=2.47E-12), CHRNB2 (rs45490696, p=1.45E-09, chr. 1), CHRNA2 (rs2741339, 

p=5.21E-17, chr. 8), and CHRNA4 (rs2273500, p=2.84E-22, chr. 20). Second, we identified 

associations with variants in several genes that modulate dopaminergic transmission, such as 

the dopamine receptor D2 (DRD2: rs34632468, p=1.04E-11, and rs4936277, p=1.81E-09, 

chr.11), known for its relationship with dopamine and reward,34 previously associated with 

nicotine dependence35 and implicated in a recent large-scale GWAS of addiction;36 dopamine 

beta-hydroxylase (DBH: rs2007153, p=9.35E-21, and rs2519155, p=7.25E-13, chr.9), which 

encodes an enzyme necessary to convert dopamine to norepinephrine and has been 

consistently implicated in smoking behaviors;13,37 lysine demethylase 4A (KDM4A: rs489319, 
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p=1.61E-11, chr. 1), previously found to interact with dopaminergic agents and implicated in 

problematic opioid use;38 phosphodiesterase 4B (PDE4B: rs7528604, p=5.68E-10, chr. 1), 

which has regulatory effects on dopaminergic pathways and has been implicated in GWAS of 

externalizing behaviors,39 smoking initiation,37,39 and general liability for addiction;36 and neural 

cell adhesion molecule 1, NCAM1 (rs9919558, p=4.44E-12, chr. 11), which modulates 

dopamine signaling41 40 and has been associated with several smoking-related traits.35,37 We 

also identified an association with a deleterious (CADD=18.9)42 SNP (rs986391, p=3.08E-14, 

chr. 5) in the TENM2 gene, recently implicated in smoking initiation, cigarettes per day, and 

smoking cessation.13 

Furthermore, we identified variants in GRM8 (Glutamate Metabotropic Receptor 8; 

rs2157752, p=5.32E-09, chr.7), important for mediating reward-related learning and memory, 

and in BDNF (rs6265, p=7.98E-10, chr. 11), a candidate gene in genetic studies of substance 

use disorders given its role in synaptogenesis and memory. None of the lead SNPs showed 

evidence of heterogeneity across cohorts, based on the I2 index (Supplementary Figure 4). 

Combining these data with UKBB (which uses a less stringent TUD definition, TUD-

multi+UKBB) yielded fewer lead SNPs (Supplementary Table 8).  
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Figure 2. Manhattan and porcupine plots for the TUD-multi meta-analysis and ancestry-

specific GWAS. (a) TUD-multi identified 88 independent risk loci, all of which were recently 

identified by the GSCAN study. (b) Porcupine plot of ancestry-specific meta-analyses identified 

63 loci in the European cohort (EUR, in red), and 2 loci in the African-ancestry cohort (AA, in 

blue). No significant associations were detected in the Latin American-ancestry (LA) cohort. We 

used a sign test to examine the 74 EUR lead SNPs in the AA and HA cohorts, of which 57 and 

53, respectively, were directly analyzed or had proxy SNPs in these populations 

(Supplementary Table 10). Most SNPs had the same direction of effect in both populations 

(AA = 45 out of 57, HA = 41 out of 53; sign test AA p =�1.31E-05, LA p =�8.17E-05; 

Supplementary Figure 5). Only 25 SNPs (AAs = 12, HAs = 13) were nominally associated 

across populations (p <�0.05), none of which survived multiple testing correction. 

 

Within-ancestry meta-analyses identify ancestry-specific loci associated with TUD. We 

conducted within-ancestry meta-analyses of EUR (TUD-EUR) and AA (TUD-AA) using a 

sample-size weighted fixed effects model, and a GWAS of LA (TUD-LA).  

TUD-EUR included 11,422,241 imputed SNPs in a cohort of 163,734 TUD cases and 

331,271 controls, which is 8.5 times larger than the total sample size of previous nicotine 
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dependence GWAS.27 Observable inflation is attributable to polygenic signal rather than 

population stratification or other confounding (LDSC intercept 1.049, SE=0.012) and we did not 

identify evidence of heterogeneity (I2) across the cohorts (Supplementary Figure 6). The TUD-

EUR meta-analysis yielded a significant h2
SNP estimate of 11.70% (SE=0.005, Supplementary 

Table 9), and identified 74 GWS significant lead SNPs located in 63 independent loci (Figure 

2B; Supplementary Table 10). Fourteen of these loci were ancestry specific in EUR and not 

GWS in the multi-ancestry GWAS. Among the 63 independent loci, 13 were fine-mapped to a 

credible set (posterior inclusion probability > 0.50), of which 6 harbored known protein coding 

genes (CHRNB2, GALNT10, FAM168A, SPATS2, SYT17, ASIC2; Supplementary Table 11).  

Again, combining these data with those of UKBB in a secondary GWAS (TUD-

EUR+UKBB) yielded very similar results (e.g., similar h2
SNP estimate of 9.30% and rg estimate of 

0.99, SE=0.001; lead SNPs and independent loci presented in Supplementary Table 12). 

Considering the similarity between the primary and secondary GWAS, all downstream analyses 

used the EUR GWAS for the most stringent TUD definition (TUD-EUR), which excluded the 

UKBB sample.  

The TUD-AA meta-analysis yielded a significant h2
SNP estimate of 11.09% (SE=0.014, 

Supplementary Table 9), and 2 independent loci (Supplementary Table 13), one on chr. 9 

(rs2007153, p=1.17E-08) in DBH, which is novel for the AA population, and another on chr. 20 

(rs6011779, p=9.27E-09) in the CHRNA4 gene, replicating a finding from a prior multi-ancestral 

(EUR+AA) GWAS of smoking.27 Multi-ancestry fine-mapping analyses using PAINTOR 

corroborated the region in chr. 9, identifying two potential causal variants in this locus 

(Supplementary Table 14). The TUD-LA GWAS yielded a significant h2
SNP estimate of 8.14% 

(SE=0.02, Supplementary Table 9) but did not identify any GWS loci (Figure 2), presumably 

due to the smaller sample size. 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.03.27.23287713doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287713
http://creativecommons.org/licenses/by-nd/4.0/


 

 

12 
 

Integration with functional genomic data implicates hundreds of novel TUD candidate 

risk genes. To further our biological interpretation of the TUD-EUR GWAS results and prioritize 

potential candidate genes and proteins, we performed multiple in silico downstream analyses 

using MAGMA,41,42 H-MAGMA,43 S-MultiXcan/S-PrediXcan,44 TWAS,45 and PWAS.45 

First, we conducted gene-based analyses via MAGMA,41,42 which mapped SNP-level 

associations to 91 significant genes (p<2.63E-06), 20 (21.62%) of which replicated genes near 

or in GWS loci (e.g., CHRNA3, CHRNA4, KDM4A, DBH; Supplementary Table 15). 

To identify neurobiologically relevant target genes, we incorporated TUD GWAS data 

with chromatin interaction profiles from human brain tissue using Hi-C coupled MAGMA (H-

MAGMA).43 These analyses identified 1,017 unique gene-tissue pairs associated with TUD 

(p<9.44E-07), a significant proportion of which showed cell-type (15.63% cortical neurons, 

16.42% iPSC-derived neurons, 20.75% midbrain dopaminergic neurons, 14.25% iPSC-derived 

astrocytes) or developmental stage-specific (15.73% fetal, 17.21% adult) expression 

(Supplementary Table 16). 

Using S-MultiXcan to predict the effect of common SNP variation on gene expression in 

multiple brain tissues, we detected significant associations for 46 genes (Supplementary Table 

17), with effects dispersed across 13 brain regions (amygdala, anterior cingulate cortex, basal 

ganglia [nucleus accumbens and putamen], cortex and frontal cortex, cerebellar hemisphere, 

cerebellum, hypothalamus, spinal cord, substantia nigra). Inspection of region-specific results 

via S-PrediXcan identified 25 genes that were consistently upregulated (GPX1, PPP6C, 

GMPPB, WDR6, QRICH1, NICN1, ARFRP1, METTL21B, RNF123, CCDC88B, HIST1H2BD, 

CCDC71, PSMA4) or downregulated (CHRNA2, AMT, P4HTM, NCKIPSD, ATP23, DALRD3, 

MST1, RHCE, TSFM, RBM6, TRIM35, PHACTR4) in more than one brain region 

(Supplementary Table 18). 
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Next, we assessed differential transcriptomic and proteomic regulation of TUD risk loci in 

the dorsolateral prefrontal cortex (DLPFC) by performing TWAS (mRNA and splicing) and 

PWAS, respectively. Associations across these three regulatory models identified 50 unique 

TUD risk genes (32, mRNA expression; 13, splicing expression; 14, proteome expression; 

Supplementary Tables 19 and 20). Colocalization analysis identified four genes and proteins 

(NT5C2, GPX1, ABHD12, RHCE) associated with TUD via their regulation of brain expression 

levels and protein abundance (PP4 >0.80, Supplementary Table 21, Supplementary Figure 

7). 

Overall, after controlling for multiple comparisons, these analyses identified 461 unique 

genes with statistical evidence of association with TUD (Figure 3a, Supplementary Table 22). 

Of these, 159 genes converged across at least 2 methods, and 2 genes (GPX1, GMPPB) 

converged across all six methods and replicated prior GSCAN findings. 110 (23.86%) of the 461 

genes identified via these analyses were identified by the GWS loci, and two were novel TUD 

genes not identified in prior FTND or GSCAN analyses (PTCHD4, THUMPD3), which prompt 

novel hypotheses to be tested experimentally. 
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Figure 3. Integration with functional genomic data implicated 461 unique TUD candidate 

risk genes. (a) Of 461 associated genes, 56 converged with at least 3 methods, and were 

dispersed throughout the chromosomes. (b) LDSC (SNP-based) and MAGMA tissue-specific 

gene expression of TUD risk genes reveals substantial brain enrichment (Supplementary 

Tables 25-26). (c) The genetic findings across multiple levels of analysis (LDSC, MAGMA, 

MultiXcan, BrainXcan) implicated brain regions exhibiting anatomical differences in cases. (d) 

Cell type-specific expression of TUD risk genes. Results from MAGMA property analyses and 

gene expression using human single-cell RNA-sequencing datasets (Supplementary Table 28 

for full list). After multiple testing correction for all datasets, only genes expressed in GABAergic 

neurons were associated with TUD (Supplementary Table 28).  

 

Tissue and cell-type analyses of TUD identify enrichment in brain tissue and 

GABAergic neurons. To identify relevant tissues implicated in TUD, we performed various 

SNP (LDSC partitioned heritability) and gene-wide (MAGMA) analyses. We performed 

partitioned heritability in LDSC to evaluate the enrichment of the genome-wide findings in over 

50 functional genomic annotations (and across tissues, as described below). In the baseline 
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LDSC model, conserved and regulatory functional annotations were significantly enriched 

(Supplementary Figure 8 and Supplementary Table 23 for full list).  

Tissue enrichment analyses in MAGMA use gene expression data from GTEx (v8). In 

addition to non-brain tissues (i.e., cardiovascular, hematopoietic, adrenal pancreas, and other, 

p<3.37E-05, Supplementary Table 24), we detected significant enrichment mostly in the brain 

(p=1.53E-15), spanning multiple brain regions, including the hippocampus, the limbic system, 

frontal cortex (Supplementary Tables 25-26, Figure 3b-c), most of which were also implicated 

in S-MultiXcan (Supplementary Table 17). Correlating the effects of SNP variation with brain 

imaging traits via BrainXcan identified similar results, including significant (p<1.92E-04) 

associations with decreased gray matter volume in the right ventral striatum (Supplementary 

Table 27).  

Next, we used FUMA to examine cell-type specific gene expression associated with 

TUD, leveraging single-cell RNA-sequencing (sc-RNA seq) datasets. After multiple correction 

testing across datasets, we identified a significant association between TUD risk and cell-type 

specific gene expression in GABAergic neurons for individual human sc-RNA seq datasets 

(Linnarsson, midbrain, gaba: p<5.03E-03; nbGaba: p<4.29E-02; Figure 3d; Supplementary 

Table 28). These results did not survive conditional analyses within and across datasets.  

 

Implications for TUD biology based on gene-set and pathway analyses. We used 

MAGMA41,42 to conduct a gene-wise TUD analysis and to test for enrichment of pathways 

curated from multiple sources. After correcting for multiple comparisons, 13 related pathways 

and biological processes were significantly enriched for genes associated with TUD (p<2.65E-

06; Supplementary Table 29). Associations implicated fundamental processes related to 

nicotine response (e.g., high calcium and sodium permeable nicotinic acetylcholine receptors, 
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p=6.03E-15; behavioral response to nicotine, p=5.81E-13), regulation of postsynaptic nicotinic 

acetylcholine receptors (p=1.32E-10), and nicotine effect on dopaminergic neurons (p=1.87E-

06), among others. 

 

Drug Repurposing. Linking transcriptome-wide patterns to perturbagens that pass the blood-

brain barrier from the Library of Integrated Network-Based Cellular Signatures (LINCS)36 

database identified 235 medications approved by the U. S. Food and Drug Administration 

(Supplementary Table 30). Of the 235 identified medications, 20 targeted at least one 

mapped/independent gene from our GWAS (Figure 4). The medications that significantly 

reversed (Bonferroni p<6.03E-05) the transcriptional profile associated with TUD included 

varenicline (a well-known therapeutic for smoking cessation), sodium channel blockers (e.g., 

amiloride), and compounds that are used to treat conditions that commonly co-occur with TUD, 

such as antipsychotics (e.g., clozapine), dopaminergic agents (e.g., ropinirole), opioids (e.g., 

nalbuphine), and antidepressants (e.g., amoxapine), among others (Supplementary Table 30). 

An additional drug repositioning analysis using DRUGSETS identified three significant 

(Bonferroni p<6.80E-05) medications: varenicline, cytisine, and galantamine (Supplementary 

Table 30).  
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Figure 4. Sankey Diagram showing drug repurposing results from S-PrediXcan brain 

tissues. 20 medications/perturbagens grouped by ATC category membership from the Library 

of Integrated Network-Based Cellular Signatures (LINCS)36 database. ATC categories 

connected to perturbagen edges represent corresponding ATC category membership. 

Perturbagens connected to gene target edges are associated with the reversal of the TUD 

transcriptomic profile from S-PrediXcan brain tissue results. Only medications that targeted at 

least one mapped/independent gene from our GWAS are plotted. 

 

Genetic correlation with other traits. We estimated pairwise rg with TUD for 113 published 

phenotypes using LDSC.46 TUD showed FDR-significant correlations rg with 76 traits (Figure 

5b; Supplementary Table 31). As expected, the strongest positive correlations were with 

smoking-related traits (e.g., age of smoking initiation rg=-0.59, SE=0.03; smoking initiation 

rg=0.81, SE=0.02; cigarettes per day rg=0.44, SE=0.03; smoking cessation rg=0.66, SE=0.02; 

FTND rg=0.63, SE=0.06; Figure 5a) and other substance use traits (e.g., cannabis use disorder 
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rg=0.64, SE=0.04; drinks per week rg=0.36, SE=0.02; opioid use disorder (OUD) rg=0.47, 

SE=0.04). TUD clustered with addiction traits rather than consumption phenotypes 

(Supplementary Figure 9).  

 

 

 

 

 

 

 

Figure 5. FDR-significant genetic correlations between TUD-EUR and 113 complex traits, 

including smoking and related phenotypes (b). (a) TUD consists of multiple components, 

progressing from experimental use to regular use, compulsive use, cessation, and relapse. 

Therefore, high genetic correlations (rg) are to be expected between the age of smoking 

initiation (AgeSmkInit), smoking initiation (SmkInit), cigarettes per day (CPD), smoking 

cessation (SmkCess)13, nicotine dependence measured using the Fagerström Test for Nicotine 

Dependence (FTND)27, and tobacco use disorder (see Supplementary Table 31 for full 

results). (b) Genetic correlations with an extended list of traits from publicly available GWAS. 

Traits with positive rg values are plotted above the line; traits with negative rg values below the 

line. All rgs are significant using a 5% FDR correction for multiple testing. (c-e) Systematic 

comparison of significant genetic correlation estimates between TUD and SmkInit (c), CPD (d) 

and FTND (e) reveal overlapping (black dots) and trait-specific (blue and yellow dots) relations 

between TUD and these other smoking phenotypes. rg estimates were generally higher for TUD 

than CPD - even with a smaller sample size (TUD, N=495,005; CPD, N=784,353) - and FTND. 

On the contrary, rg’s were generally smaller for TUD than SmkInit, possibly because of the 

larger sample for SmkInit (N=3,383,199) than TUD. Overall, these results indicate that these 

smoking behaviors, including SmkInit, CPD, FTND, and TUD, represent both unique and 
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interrelated polygenic influences, which are complementary to those associated with other 

complex behaviors and disorders at the genetic level. 

 
 

TUD was also genetically associated with 59 other psychiatric and medical conditions 

(Figure 5b, Supplementary Table 31). There were significant positive rg with psychiatric traits 

(e.g., externalizing rg=0.71, SE=0.02; ADHD rg=0.50, SE=0.03; posttraumatic stress disorder 

rg=0.31, SE=0.08) and risky behavioral traits, including younger age of first sex (rg=-0.50, 

SE=0.03). We also found positive rg with health outcomes (e.g., coronary artery disease rg=0.26, 

SE=0.03; waist-to-hip ratio rg=0.26, SE=0.02; multisite chronic pain rg=0.36, SE=0.03) and 

several social determinants of health, such as the Townsend deprivation index (rg=0.61, 

SE=0.07). There were negative rg with socioeconomic variables, including educational 

attainment (rg=-0.53, SE=0.02) and household income (rg=-0.49, SE=0.03) and with intelligence 

(rg=-0.28, SE=0.02). Conditioning on alcohol, cannabis, or opioid use disorder did not 

substantially modify the magnitude or direction of these associations (Supplementary Table 

32). Virtually all rg estimates for other phenotypes were greater with TUD than cigarettes per day 

(Figure 5c) and FTND (Figure 5d), but not smoking initiation (Figure 5e). 

Among AA samples, there were significant rg with smoking trajectories and other 

substance use traits (OUD rg=0.44, SE=0.11; maximum habitual alcohol consumption rg=0.77, 

SE=0.19). Nominal associations (p<0.05) were observed for smoking initiation (rg=0.35, 

SE=0.13), depression (rg=0.45, SE=0.22) and type 2 diabetes (rg=-0.23, SE=0.09; 

Supplementary Table 33). 

Phenome-wide association analyses. To further explore pleiotropic effects, we performed a 

series of phenome-wide association studies (PheWAS) of TUD polygenic scores (PGS) in other 

EHR and clinical cohorts of adults, and a young population-based cohort. We performed these 

analyses within ancestries. 
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EHR cohorts. We conducted PheWAS with EHR data to test the association between polygenic 

risk for TUD and liability for thousands of other medical conditions, including TUD, in another 

independent site, Mayo Clinic. As expected, TUD PGS was strongly associated with TUD 

(p=1.90E-145, Supplementary Table 34, Figure 6a), explaining 7.3% of the (Nagelkerke's R2) 

variance. Additional significant (p<3.24-05) associations included 4 traits in the substance use 

disorders domain (e.g., alcohol-related disorders, OR=1.33, p=6.30E-26), 10 psychiatric 

conditions (e.g., depression, OR=1.09, p=4.31E-11), and medical conditions strongly associated 

with TUD (e.g., chronic airway obstruction, OR=1.25, p=1.60E-32). Most of these associations 

remained significant after accounting for TUD diagnosis (Supplementary Table 34). We also 

noted associations across multiple other medical categories, including endocrine/metabolic 

(e.g., morbid obesity, OR=1.12, p=3.53E-13; type 2 diabetes, OR=1.09, p=1.48E-09), digestive 

(e.g., diseases of esophagus, OR=1.07, p=1.47E-10), circulatory (e.g., ischemic heart disease, 

OR=1.09, p=1.56E-11) and neurologic (e.g., pain, OR=1.07, p=4.33E-08), among others 

(Supplementary Table 34). Compared to FTND PGS, TUD PGS were more strongly 

associated across virtually all domains, including TUD (Figure 6a). After conditioning on PGS 

for other smoking variables (CPD, SmkInit, FTND), TUD PGS was still significantly associated 

with TUD and 14 other mental and medical traits (Supplementary Table 34). We repeated the 

TUD PGS analyses in a BioVU cohort of AA individuals using the TUD-AA meta-analysis 

results. As expected, TUD was the strongest and most significant (OR=1.20, p=2.81E-06) 

association (Supplementary Table 35).  

Yale-Penn sample. We next extended the analyses to a deeply characterized sample recruited 

for genetic studies of substance use disorders: the Yale-Penn sample.47 We examined the 

association between PGS for TUD and hundreds of other traits derived from a comprehensive 

psychiatric interview, the Semi-Structured Assessment for Drug Dependence and Alcoholism 

(SSADDA). TUD-EUR and TUD-AA PGS were strongly associated with nicotine dependence as 
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defined via a Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnosis in both the 

EUR (OR=1.83, p=3.51E-49; Figure 6b; Supplementary Table 36) and AA cohorts (OR=1.13, 

p=7.13E-04), respectively, although the latter association did not survive multiple testing 

correction (Supplementary Table 37). In the EUR cohort, we also noted significant 

associations between TUD-EUR PGS and 224 other phenotypes, including 163 in the 

substance-related domain (44 opioid-related, 31 cocaine-related, 25 alcohol-related, 23 

tobacco-related, 14 sedative-related, 13 cannabis-related, 10 other, 2 stimulant-related), and 50 

in other domains (13 medical, 33 psychiatric [9 PTSD, 11 depression, 7 antisocial personality, 3 

suicide, 2 ADHD, and 2 conduct disorder], 9 environmental, and 6 demographic phenotypes. 

Again, compared to FTND PGS, TUD-EUR PGS was more strongly associated across virtually 

all domains, including nicotine dependence (Nagelkerke's R2=0.101 vs 0.062; Supplementary 

Table 36). After conditioning on PGS for other smoking variables (CPD, SmkInit, FTND), TUD 

PGS was still significantly associated with 11 smoking-related traits and 50 other mental and 

medical conditions (Supplementary Table 36), again emphasizing the value of collecting 

information on later stages of vulnerability or more severe phenotypes, such as TUD. 
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Figure 6. TUD PGS PheWAS in the (a) Mayo Clinic, (b) Yale-Penn, and (c) ABCD European 

cohorts. Only selected Bonferroni-significant traits are shown. In (a) and (b), association of 

TUD PGS (in black) is conditioned on PGS for FTND, CPD, and SmkInit (in green). The exact 

values for each association and extended lists of traits can be found in Supplementary Tables 

34, 36 and 38. 

 

Adolescent Brain Cognitive Development (ABCD) cohort. Lastly, we extended our polygenic 

analyses to a drug naïve developmental sample (9-11 years of age at recruitment; analytic 

N=62 to 5,556). We concentrated on 12 traits that showed significant genetic correlations in the 

adult samples (Supplementary Table 38, Figure 6c). Although tobacco exposure was 

uncommon in this pediatric population (2.30% prevalence), externalizing behaviors, which 

emerge in childhood and are strong correlates of substance use, were available. After correcting

for multiple testing, TUD PGS was significantly (p<4.00E-03) associated with externalizing 

behaviors (i.e., Child Behavior Check List [CBCL] externalizing scores, β=0.07, p=1.21E-06; 

 

n 

ng 
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CBCL ADHD scores, β=0.06, p=4.97E-05), as well as internalizing (i.e., suicide attempt, β=0.05, 

p=1.52E-03, CBCL depression scores, β=0.05, p=1.11E-03), cognitive ability (β=0.06, p=8.35E-

06), neighborhood deprivation (β=0.04, p=1.05E-03), and weight-related phenotypes (i.e., BMI, 

β=0.06, p=1.61E-05; weight, β=0.04, p=2.77E-03). Notably, these children were not chronically 

exposed to tobacco; therefore, we would speculate that these associations are not a 

consequence of smoking but rather may underlie overlapping genetic architectures among the 

traits studied that predate use of tobacco.  

 

Causal relationships with TUD and bi-directional effects of TUD with other traits. We used 

MR analyses to test directional causal relationships between significantly genetically correlated 

traits (N=31) and TUD among EURs only due to the small sample size and limited statistical 

power in other populations (Supplementary Table 39). There was a positive causal effect of 

TUD on cross-disorder. Seven traits showed significant causal effects on TUD. Specifically, we 

observed a negative causal effect of education attainment, and a positive causal effect of drinks 

per week, depression, BMI, externalizing, opioid prescriptions, and opioid use disorder on TUD.  

 

Discussion 

Uncovering the genetic underpinnings of individual differences in TUD liability can 

advance diagnosis, prevention, and treatment efforts for a disorder of enormous public health 

significance. GWAS have uncovered multiple associations with tobacco use, but findings for 

tobacco dependence or disorder have been limited due to the difficulty of characterizing large 

numbers of individuals using a gold-standard research or clinical diagnosis. Here we present the 

first multi-ancestry GWAS of TUD using data from EHR, as a complementary strategy for 

ascertainment. EHR-biobanks are the result of years of work recruiting, consenting, and 
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genotyping individuals. As a result, researchers can now conduct studies such as the one 

reported here, gathering data for 898,680 individuals in less than 4 months, to identify novel 

biology for disorders. The number of GWAS signals, enrichment in relevant pathways and 

tissues, and genetic overlap with nicotine-related traits provide proof of principle that EHR can 

serve as a complementary tool to study TUD genetics.  

Our findings demonstrate that TUD, as defined via EHR, was genetically correlated with 

traits derived from traditionally ascertained cohorts, including nicotine dependence via FTND 

and smoking cessation, providing clear evidence that the signal captured by TUD phecodes is 

valid. Of note, the genetic correlation between TUD and cigarettes smoked per day (CPD) was 

relatively modest (rg=0.44), suggesting that the genetic architectures of consumption and 

misuse are only partially overlapping, consistent with prior GWAS of alcohol and cannabis use 

and misuse (e.g., 23,26,48). This contrasts with earlier observations for FTND and CPD, for which 

the genetic correlation was almost at unity (rg=0.95).27 This shows that TUD captures features 

beyond the frequency of smoking or severity of nicotine dependence. Although FTND and TUD 

were more strongly genetically correlated (rg=0.63), in general, we observed that TUD PGS was 

more predictive of DSM-defined tobacco dependence and a plethora of comorbid traits in the 

Yale-Penn sample, than FTND PGS. The only exception was for smoke after waking, which was 

more strongly associated with FTND PGS, likely because time-to-first cigarette is one of the 

FTND items. TUD was highly correlated (rg=0.81) with regular cigarette use (i.e., smoking at 

least 100 cigarettes in a lifetime, previously referred to as “smoking initiation”)13, which is 

expected as nicotine is a highly addictive substance, with 85% of smokers meeting criteria for 

TUD.1,2 However, our polygenic findings demonstrate that TUD explains additional variance 

above and beyond that accounted for by other smoking traits (smoking initiation, CPD, FTND). 

This emphasizes the need to measure the full spectrum of addiction liability,49 from regular use 
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to more severe phenotypes, such as TUD, to account for the distinct biological factors relevant 

at each stage.  

Common SNPs were able to account for a fraction (12%) of the overall heritability of 

TUD (40-60%) as determined by prior family and twin studies.9,11 The multi-ancestral meta-

analysis identified 88 independent loci, 18 times the number previously reported for nicotine 

dependence.27 These include corroborative support for the involvement of nicotinic acetylcholine 

receptor genes (CHRNA5-A3-B4, CHRNB2, CHRNA2, CHRNA4), which have been consistently 

associated with smoking behaviors,20 particularly in studies of self-reported CPD.13 Other 

variants identified are in genes that modulate dopaminergic and glutamatergic 

neurotransmission, compromising reward-based learning and facilitating drug-seeking behavior, 

and in BDNF, which is involved in memory consolidation processes,51 and a well-studied 

candidate gene in addiction.52 These and other candidates supported by TUD (e.g., PDE4B) 

were genetically correlated with other addiction phenotypes,36 emphasizing the shared 

neurobiological mechanisms of addiction. 

Downstream analyses prioritized genes and drug candidates that could be used for 

follow-up mechanistic studies in model organisms. Specifically, we identified “core” genes that 

could be “pleiotropic hotspots” associated with multiple traits. One was glutathione peroxidase-1 

(GPX1), which is involved in oxidative stress. Intriguingly, it has been reported that glutathione 

peroxidase-1 protects against lung inflammation induced by smoking in mice, and agents that 

mimic this action (e.g., ebselen), which restore GPX1 activity in situations of extreme oxidative 

stress, can protect from lung inflammation induced by smoking.53 Another was GMPPB, which 

has been associated with accelerated lung aging and e-cigarette smoking.54 NT5C2 is involved 

in maintaining cellular nucleotide balance, and was associated with schizophrenia55 and 

smoking behaviors in an exome-wide association study.56 These genes showed a consistent 
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association based on colocalization analyses (here and previously57), suggesting that they could 

confer TUD risk by modulating regulated gene expression and protein abundance in the brain. 

The enrichment of TUD in brain tissues further supports TUD as a brain disorder, long 

supported by neuroscience and more recently by genetics.58 We provide suggestive evidence 

for the involvement of the cerebellum in TUD, along with other regions that have long been 

studied in relation to addiction such as the fronto-striatal loop, hippocampus, and amygdala.59 

Genetic correlations revealed substantial levels of pleiotropy with traits that often co-

occur with TUD, including other substance use and psychiatric disorders. These associations 

were particularly evident in the Yale-Penn sample,47 which has comprehensive phenotypic data 

for substance use disorders. In adult patients from the Mayo Clinic, we replicated the 

associations with substance and other psychiatric disorders, extending them to medical 

disorders, such as HIV, heart disease, and pain, some of which (e.g., respiratory conditions) 

likely reflect chronic smoking. The positive associations between genetic liability for TUD and 

other outcomes, such as BMI and other internalizing/externalizing problems in tobacco-naive 

children (ABCD), may also reflect true biological relationships. Although we are far from 

untangling this complex web of genetic and non-genetic correlations, the extensive phenotypic 

spectrum associated with TUD is undeniable.  

Currently, developing new therapeutics for TUD is viewed as risky because of a lack of 

high-quality targets, historically low success rates, and unintended side effects. Although genes 

identified in our GWAS, including CHRNA5, CHRNA4, and CHRNB2, might moderate the effect 

of varenicline, a smoking cessation treatment that operates as a partial agonist at the nicotine 

acetylcholine a2b4 receptor,60 varenicline (along with other medications such as nicotine 

replacement therapies) has limited efficacy or adverse effects.61,62 In a proof-of-principle study, 

So et al.63 identified several repurposing candidates for treating psychiatric disorders by 

connecting imputed transcriptomic profiles from GWAS data to drug-induced gene expression 
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profiles. Using this approach, we identified hundreds of potential drug candidates predicted to 

significantly reverse the TUD transcriptomic profile. These included norepinephrine reuptake 

inhibitors (e.g., amoxapine) and antipsychotics (e.g., clozapine), pointing to convergent 

molecular mechanisms between TUD and other psychiatric disorders that are the usual target of 

these agents, replicating prior observations.64,65 The potential therapeutic utility of anti-

inflammatory and blood glucose lowering medications was also suggested by our analyses, in 

addition to an anti-Parkinson medication known to interact with dopaminergic activity (i.e., 

biperiden) and one that acts both as an antagonist of acetylcholinesterase and an agonist of 

nicotinic receptors (i.e., galantamine), as shown in recent independent studies.65,66 Although, to 

date, no repurposed drugs have been developed for treating SUDs based on GWAS data, this 

is an important potential path forward, particularly for SUDs, where few effective 

pharmacotherapies are available. 

Future research may address some of the limitations of our study. Prior work has 

demonstrated that ICD codes have a low sensitivity for current tobacco use, but may have a 

reasonable specificity for this common behavior.67 Our results appeared to be robust to 

moderate levels of misclassification, particularly in controls, as detected by the pairing with self-

reported questionnaire data. Our results also appeared to be robust to moderate levels of cross-

cohort heterogeneity, including potential differences in diagnostic practices and different levels 

of misdiagnosis of control populations across sites. Although studies that systematically 

evaluate the effect of removing potentially misclassified individuals are needed, we chose not to 

remove them in this study because not all individuals had concomitant survey data available. 

This questionnaire data, along with other forms of EHR data (e.g., clinical notes), may help 

capture additional phenotypes, including the response to treatment or the ability to successfully 

quit smoking without formal treatment. We have highlighted potential differences of traits 

ascertained by ICD codes as a limitation of our study. rg results revealed high levels of 
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association between TUD and hundreds of other traits. However, the extent to which TUD 

shares biological underpinnings with other traits and diseases may also be influenced by 

potential misdiagnosis, ascertainment and cross-trait assortative mating, among many other 

factors.68 Longitudinal data from EHR, with data collection spanning the period prior to and 

following the onset of substance use and SUD, are particularly valuable for studying the timing 

of onset, within-person change, and application of time-varying effects, which will help to 

differentiate causation from correlational findings. The advent of single-cell transcriptomics, 

larger QTL databases in more specific cell types, and the inclusion of more ancestrally diverse 

samples will improve the interpretability of associated loci. Although we have included diverse 

cohorts, our study lacked many major ancestral groups such as East Asians and South Asians. 

Furthermore, other forms of genetic variation, such as rare single variants69 or structural 

polymorphisms70 are likely to account for much of the “missing heritability” in genetic risk for 

TUD. Lastly, tobacco use can be greatly affected by environmental factors,12 such as cultural 

context, public health policies and characteristics related to socioeconomic status.71 Together 

with the existing body of literature,72–75 the strong genetic correlations between TUD and 

environmental influences, such as Townsend deprivation index, educational attainment and 

prenatal smoking, underscore the importance of considering environmental moderators in 

understanding the complex etiology of TUD. There is a great need in the field, therefore, to 

systematically assess sociocultural factors in healthcare settings.76 

In sum, this work demonstrates that EHR is a viable and cost-efficient complementary 

approach to rigorous clinical ascertainment for genetic studies of TUD, similar to other SUD 

traits. At various levels of analysis, this study identifies and prioritizes previously unidentified 

genes of potential interest. TUD shares biological processes common to many SUDs and is 

highly correlated with many psychiatric and medical disorders. We anticipate that these results 
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can be combined with prior smoking GWAS in larger multivariate analyses to elucidate the full 

spectrum of smoking behaviors and accelerate gene discovery for TUD. 

 

Methods 

Smoking phenotypes and cohorts. We defined cases as patients who received at least two 

TUD ICD-9 or -10 codes (corresponding to the phecode definition) in their medical records, and 

controls as patients who had no TUD diagnosis codes (Supplementary Table 2). In UKBB only, 

cases were defined as having 1 ICD-10 code for TUD, and controls had none.41 Additionally, we 

required controls to be 18 years of age or older at time of analysis (04/2022). Patients younger 

than 18 years were excluded because they may not yet have reached the age of TUD 

diagnosis. We examined the sensitivity of our TUD phenotyping using the patients’ self-reported 

tobacco use via survey data when available (Supplementary Table 3, list of smoking traits).  

Our data sources included registries from five health systems linked to biobanks: 

Vanderbilt University Medical Center’s (VUMC) biobank (BioVU), Mass General Brigham 

Biobank (MGBB), Penn Medicine Biobank (PMBB), Million Veteran Program (MVP), and UK 

Biobank (UKBB). There were 46,905 (EUR) patients from VUMC, 22,268 (EUR) patients from 

MGBB, 39,087 patients from PMBB (28,999 EUR and 10,088 AA), 545,530 patients from MVP 

(396,833 EUR, 104,332 AA, 44,365 LA), and 244,890 participants from UKBB. Details of each 

registry, including demographics and data sources, are listed in Supplementary Table 2.  

Genotyping, imputation, and GWAS. For all cohorts, the initial GWAS analyses were 

conducted within genetic ancestral groups. Genetic ancestral groups were determined for 

BioVU, MGBB and PMBB based on principal component analysis (PCA) and comparison to 

known ancestries in the 1000 Genomes Project Phase 377 reference panel. In MVP, genetic 

ancestral groups were determined by harmonizing genetic ancestry and self-identified ancestry 
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(HARE),78 which also defines genetic ancestry based on the 1000 Genomes reference panel. 

Further details for each site are included below. GWAS analyses were performed within each 

ancestral group using SAIGE version 0.44.6.579 or PLINK 2.080 and a logistic regression. For the 

BioVU, MGBB, and UKBB cohorts, there were GWAS for only the European ancestral group 

(Supplementary Material). In PMBB, we conducted additional GWAS of the African ancestral 

group sample, and in MVP we performed additional GWAS of the African American ancestral 

group sample and the Latin American ancestral group sample. Each of the univariate GWAS 

covaried for 10 genetic ancestry principal components (PC), age, sex, number of ICD codes and 

length of record. The summary statistics for TUD in UKBB were downloaded from the GWAS 

atlas (https://atlas.ctglab.nl/traitDB/3439). 

BioVU. We used de-identified clinical data from individuals in BioVU. Genotype data 

were generated using the Illumina Multi-Ethnic Genotype Array (MEGAEX) for 72,824 

individuals. Details on the quality control process have been described elsewhere.81 Genotypes 

were filtered for SNP (<0.95) and individual (<0.98) call rates, sex discrepancies, and excessive 

heterozygosity (|Fhet|>0.2).82 The sample was then filtered for cryptic relatedness by removing 

one individual of each pair for which pihat>0.2. PCA using FlashPCA2 combined with CEU, YRI 

and CHB reference sets from the 1000 Genomes Project Phase 377 was implemented to 

determine European ancestry. We confirmed the absence of genotyping batch effects. We 

imputed genotypes using the Michigan Imputation Server with the reference panel from the 

Haplotype Reference Consortium. SNPs were filtered for imputation quality (R2 >0.3 or INFO 

>0.95) and converted to hard calls. We restricted the analyses to autosomal SNPs with minor 

allele frequency (MAF)<0.01. We removed SNPs that differed by >10% from the 1000 Genomes 

Project phase 3 CEU set77 and those with a Hardy Weinberg Equilibrium (HWE) p<1.00E-10. 

The resulting data set contained hard-called SNP information for 9,386,383 SNPs in 72,824 

individuals of European Ancestry. Controls were also required to have 3 or more years of 
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medical history with VUMC. These procedures resulted in a total sample of 7,167 cases and 

39,738 controls in BioVU. The project was approved by the VUMC Institutional Review Board 

(IRB, #160302, #172020, #190418).  

MGBB. MGBB samples were genotyped using the Illumina Multi-Ethnic Global array with 

hg19 coordinates. Variant-level quality control filters were applied to remove variants with a call 

rate <0.98, and those that were duplicated across batches, monomorphic, not confidently 

mapped to a genomic location, or associated with genotyping batch. Sample-level quality 

control filters were applied to remove individuals with a call rate <0.98, excessive autosomal 

heterozygosity (±3 standard deviations from the mean), or discrepant self-reported and 

genetically inferred sex. PCs of ancestry were calculated using the 1000 Genomes Phase 3 

dataset as a reference panel. The Michigan Imputation Server was then used to impute missing 

genotypes with the Haplotype Reference Consortium dataset serving as the reference panel. 

Imputed genotype dosages were converted to hard-call format and subjected to further quality 

control, where SNPs were removed if INFO score <0.8, MAF <0.001, HWE p<1.00E-10, or 

missingness (variant call rate <0.98). Only unrelated individuals (pi-hat <0.2) of European 

ancestry were included in the present study. These procedures yielded a final analytic sample of 

6,708 cases and 15,560 in the MGBB. The project was approved by the MGBB IRB 

(#2018P002642).  

PMBB. PMBB samples were genotyped by the GSA genotyping array. Quality control 

removed SNPs with marker call rate <95% and sample call rate <90%, and individuals with sex 

discrepancies. Genotype phasing and imputation was performed on the TOPMed Imputation 

server.83 The phasing was done using EAGLE (v2.4.1)30 and imputation was performed using 

MINIMAC software.83 IBD analysis was used to check for relatedness among imputed samples 

using PLINK 1.9. We randomly removed one individual from each pair of related individuals (pi-

hat <0.25). SNPs with an INFO score <0.3, MAF <0.01, a genotype call rate <0.95 or an HWE 
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p<1.00E-6 were removed. To estimate genetic ancestry, PCs were calculated based on 

common SNPs between PMBB and the 1000 Genomes Project phase377 using the smartpca 

module of the Eigensoft package.84 Participants were assigned to an ancestry based on the 

distance of 10 PCs from the 1000 Genomes reference populations. The resulting dataset 

included 10,088 AA individuals (cases=1,722) and 28,999 EUR individuals (cases=3,088). The 

project was approved under IRB protocol #813913. 

MVP. MVP samples were genotyped using the Affymetrix Axiom Biobank Array. 

Samples were removed if they had extreme heterozygosity, call rate <98.5%, sex mismatch, or 

>7 relatives. SNPs were removed if they had call rate <0.98 or a HWE threshold of p<1.00E-06. 

Genotype phasing and imputation was performed using SHAPEIT4 (v.4.1.3)85 and Minimac4 

software83, respectively. Biallelic and non-biallelic SNPs were imputed using the African 

Genome Resources and 1000 Genomes reference panels.77 Ancestry was defined for three 

mutually exclusive ancestral groups (European, African American, and Hispanic American) 

utilizing a previously defined approach that harmonizes genetic ancestry and self-identified 

ancestry (HARE).78 SNPs with imputation quality (INFO) score�<0.7, MAF (AA <�0.005; 

EUR�<�0.001; HIS�<�0.01), genotype call rate <0.95, and HWE p<1.00E-06  were removed. 

We also excluded one individual from each pair of related individuals (kinship >0.08, N=31,010). 

The final sample comprised 104,332 AA individuals (cases=43,743), 396,833 EUR individuals 

(cases=146,771) and 44,365 LA indivisuals (cases=12,277). The Central VA IRB and site-

specific IRBs approved the MVP study. 

SNP-heritability (h2
SNP). We estimated h2

SNP based on the liability-scale (population prevalence 

estimates of 0.125) for common SNPs mapped to HapMap386 using LDSC.46 For AA and LA, we 

created in-sample LD scores derived from the MVP genotype data using cov-LDSC.87 
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Meta-analyses and independent variants. Meta-analyses were conducted using a sample-

size-weighted method in METAL,88 assuming shared risk effects across ancestries. Effective 

sample sizes (N_Eff), calculated using the formula: 4/[1/n_case + 1/n_control], were used to 

compensate for the imbalance in the ratio of cases to controls. N_Eff were used in all meta-

analyses and all downstream analyses.  

We conducted five meta-analyses of TUD GWAS summary statistics across the 

following datasets: 1) within-ancestry meta-analysis for EUR samples in BioVU, MGBB, PMBB, 

MVP, and an additional meta-analysis including UKBB, 2) within-ancestry meta-analysis for AA 

in MVP and Penn, and 3) multi-ancestry meta-analysis across EUR (BioVU, MGBB, PMBB, 

MVP), AA (PMBB, MVP), and HA (MVP) datasets, and an additional meta-analysis including 

UKBB. Inflation of test statistics due to polygenicity or cryptic relatedness was assessed using 

the LDSC attenuation ratio [(LDSC intercept - 1)/(mean of association chi-square statistics - 1)]. 

Resulting genome-wide significant (GWS) loci were defined as those with p<5.00E-08 with LD 

r2>0.1, within a 1MB window, based on the structure of the Haplotype Reference Consortium 

(HRC) multi-ancestry reference panel for the multi-ancestry meta-analysis, or the HRC 

ancestry-appropriate reference panel otherwise. GWS loci were examined for heterogeneity 

across cohorts via the I2 inconsistency metric.  

To identify TUD risk loci and lead SNPs, we performed LD clumping in FUMA41 using a 

range of 3�Mb, r2
�>0.1, and the respective ancestry 1000 Genome reference panel.77 Genomic 

risk loci that were located <1Mb apart were incorporated into a single locus. For loci that 

harbored multiple variants, we used COJO in GCTA89 to define independent variants by 

conditioning them on the most significant variant within each locus. Following conditioning, 

significant variants (p<5.00E-08) were considered independent.  

We determined credible variants among the independent variants by merging risk 

variants within 1Mb of the lead variant and fine-mapped the resulting region with 95% credible 
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sets using FINEMAP.90 Posterior inclusion probability ranges from 0 to 1 with values closer to 1 

indicating greater causal probability. We implicated a putative causal variant if it accounted for > 

50% of the posterior probability in the 95% credible set.  

Multi-ancestry fine-mapping analyses. We used PAINTOR v3.191 to perform multi-ancestry 

fine mapping for the two risk loci identified in both the TUD-EUR and TUD-AA metaGWAS. For 

each locus, we extracted SNPs with an absolute value of Z-score larger than 3.9 within a 1Mb 

region of the lead SNP. As suggested by PAINTOR, we created the AA and EUR LD matrices 

using the 1000 Genome phase 3 reference panel77. We calculated the probability of each SNP 

being the causal variant, assuming that each locus has two causal variants. 

Gene-based and pathway analyses. We conducted bioannotation and bioinformatic analyses 

to further characterize the loci identified by the TUD GWAS (Supplementary Methods). We 

used the default version (v1.3.6a) of the FUMA web-based platform41 to identify independent 

SNPs (r2<0.10) and to study their functional consequences. We also used MAGMA v1.0841,42 to 

perform competitive gene-set and pathway analyses. SNPs were mapped to 19,532 protein-

coding genes from Ensembl (build 85). We applied a Bonferroni correction based on the total 

number of genes tested (p<2.63E−06). Gene sets were obtained from Msigdb v7.0 (“Curated 

gene sets”, “GO terms”). We also used Hi-C coupled MAGMA (H-MAGMA43) to assign non-

coding (intergenic and intronic) SNPs to genes based on their chromatin interactions. Exonic 

and promoter SNPs were assigned to genes based on physical position. H-MAGMA uses four 

Hi-C datasets, which were derived from fetal brain, adult brain, iPSC-derived neurons, and 

iPSC-derived astrocytes (https://github.com/thewonlab/H-MAGMA). We applied a Bonferroni 

correction based on the total number of gene-tissue pairs tested (p<9.44E−07). 

S-MultiXcan/S-PrediXcan. We used S-MultiXcan v0.7.0 (an extension of S-PrediXcan v0.6.244) 

to identify specific eQTL-linked genes associated with TUD. This approach uses genetic 
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information to predict transcript abundance in 13 brain tissues, and tests whether the predicted 

transcripts correlate with TUD. S-PrediXcan uses pre-computed tissue weights from the 

Genotype-Tissue Expression (GTEx) v8 project database (https://www.gtexportal.org/) as the 

reference transcriptome dataset. For S-PrediXcan and S-MultiXcan analyses, we chose to use 

sparse (elastic net) prediction models, which are available at http://predictdb.hakyimlab.org/. We 

applied a conservative Bonferroni correction based on the total number of gene-tissue pairs 

tested (14,198 gene-tissue pairs tested; p<3.52E−06).  

PWAS/TWAS. To identify proteins whose genetically regulated expression is associated with 

TUD, we performed PWAS analyses by integrating TUD GWAS summary statistics and 

precomputed pQTLs from discovery (Banner)98,99 and validation (ROSMAP)100,101 datasets using 

the FUSION pipeline (http://gusevlab.org/projects/fusion/).45 Next, TWAS was performed using 

gene and splicing expression profiles measured in the adult DLPFC and gene expression 

profiles from the frontal cortex. Human brain transcriptome data, used as expression reference 

panels, were obtained from the CMC100 and GTEx frontal cortex v7.45,95 All tests were Bonferroni 

corrected for multiple testing (α = 0.05/N genes tested). 

Partitioning Heritability Enrichment. We used LDSC to partition TUD-EUR h2
SNP and 

examined the enrichment based on several functional genomic annotation models.92,93 In the 

baseline model, we examined 75 overlapping functional annotations comprising genomic, 

epigenomic and regulatory features. We also analyzed ten overlapping cell-type groups derived 

from 220 cell-type-specific annotations in four histone marks: methylated histone H3 Lys4 

(H3K4me1), trimethylated histone H3 Lys4 (H3K4me3), acetylated histone H3 Lys4 (H3K4ac) 

and H3K27ac. Enriched cell-type categories were analyzed based on annotations obtained from 

H3K4me1-imputed, gapped peak data generated by the Roadmap Epigenomics Mapping 

Consortium.94 We removed multi-allelic and major histocompatibility complex region variants, 

and only report categories enriched after Bonferroni correction. 
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Tissue Enrichment Analysis. We used the LDSC package to conduct cell type specific 

heritability analysis (https://www.nature.com/articles/s41588-018-0081-4). In this analysis, we 

applied stratified LD score regression on the TUD-EUR meta-analysis summary statistics with 

sets of specifically expressed genes in various tissues from GTEx95–97 to identify TUD-relevant 

tissues. We applied a conservative Bonferroni correction based on the number of tissues 

simultaneously tested (205 tissues tested, p<2.44E-04). We also used MAGMA v1.08 gene-

property analysis of expression data from GTEx (54 tissue types) and BrainSpan (29 brain 

samples at different age) in FUMA v1.3.6a85 to test the relationships between tissue specific 

gene expression profiles and TUD-gene associations. 

Cell type-specific expression of TUD risk genes. We performed cell-type specific analyses 

implemented in FUMA, using data from nine single-cell RNA sequencing data sets from human 

brain (data sets listed in the Supplementary Material). The method is described in detail in 

Watanabe et al.,41 and uses MAGMA gene-property analysis to test for association between cell 

specific gene expression and TUD-gene association. Conditional analyses for multiple testing 

are applied to correct for all tested cell types across datasets.  

Of the overlapping findings across independent TWAS or PWAS datasets, colocalization 

analysis (in FUSION45,102) was used to determine whether SNPs mediate the association with 

TUD via effects on gene and protein expression. A posterior colocalization probability (PP) of 

80% was used to indicate a shared causal signal. 

BrainXcan. We used the BrainXcan package (https://github.com/hakyimlab/brainxcan)103 to 

predict the association between the TUD phenotype and brain features. This approach uses 

genetically determined brain image-derived phenotypes (IDPs) to test brain region association 

with the TUD phenotype via linear regression. IDPs were constructed by training genetic 

predictors on original IDPs from MRI images via ridge regression.103 IDPs were retrieved from 
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the BrainXcan database (https://zenodo.org/record/4895174). Only significant IDP associations 

with TUD that survived a Bonferroni correction are reported (93 IDPs tested; p<1.92E-04). 

Drug repurposing. Our signature matching technique used data from the Library of Integrated 

Network-based Cellular Signatures (LINCs) L1000 database. The LINCs L1000 database 

catalogues in vitro gene expression profiles (signatures) from thousands of compounds in over 

80 human cell lines (level 5 data from phase I: GSE92742 and phase II: GSE70138). We 

selected compounds that were currently FDA approved or in clinical trials (via 

https://clue.io/repurposing#download-data; updated 3/24/20). Our analyses included signatures 

of 829 chemical compounds (590 FDA approved, 239 in clinical trials) in five neuronal cell-lines 

(NEU, NPC, MNEU.E, NPC.CAS9 and NPC.TAK), a total of 3,897 signatures.  

We matched in vitro medication signatures with TUD signatures from brain tissue 

transcriptome-wide association analyses (conducted using S-PrediXcan). This consisted of 

Amygdala, Anterior Cingulate Cortex BA24, Caudate Basal Ganglia, Cerebellar Hemisphere, 

Cerebellum, Cortex, Frontal Cortex BA9, Hippocampus, Hypothalamus, Nucleus Accumbens 

Basal Ganglia, Putamen Basal Ganglia, Substantia Nigra, and Pituitary brain regions. As 

previously described,36 we computed weighted Pearson correlations between transcriptome-

wide brain associations and in vitro L1000 compound signatures, weighting each gene by its 

proportion of heritability explained, using the metafor package (version 3.8-1) in R. We treated 

each L1000 compound as a fixed effect incorporating the effect size (rweighted) and sampling 

variability (se2r_weighted) from all signatures of a compound (e.g., across all time points, cell 

lines, doses). Brain region was included as a random effect to account for any tissue specific 

heterogeneity. Both the genes for the transcriptome wide association analysis input and the 

medications from our drug repurposing analyses were required to survive a Bonferroni 

correction for multiple testing (transcriptome-wide correction=0.05/14,199=3.52E-06; 

Perturbagen correction =0.05/3,897=1.28E-05).  

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.03.27.23287713doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287713
http://creativecommons.org/licenses/by-nd/4.0/


 

 

38 
 

We applied an additional drug repositioning method, DRUGSETS.104 Data were drawn 

from the Clue Repurposing Hub and the Drug Gene Interaction Database. Drug gene-sets were 

created for 1,201 drugs with genes whose protein products are targeted by or interact with that 

specific drug. Competitive gene-set analysis was performed using MAGMA v1.0841,42 while 

conditioning on a gene set of all drug target genes in the data (N=2,281) to test for significant 

associations between drug-gene sets and TUD. We applied a Bonferroni correction for the 

number of drug-gene sets tested (p<0.05/735=6.80E-05).  

Genetic correlation analyses. We estimated the within-ancestry rgs for TUD using LDSC46 and 

the cross-ancestry rgs for TUD across population groups using POPCORN.46 We used the 

ancestry-specific 1000 Genomes Project phase 378 data as the LD references. 

We used local LDSC46 to calculate genetic correlations (rg) between TUD and 113 other 

traits or diseases.46 Local traits were selected based on previously known phenotypic 

associations between TUD and other substance use disorder phenotypes and related traits 

(e.g., cannabis use disorder, various measures of impulsivity). We used the standard 

Benjamini–Hochberg false discovery rate correction (FDR 5%) to correct for multiple testing. We 

also calculated a Bonferroni correction for 113 comparisons (p<4.42E−04); however, this 

correction is overly conservative because many of the traits tested are highly correlated with 

one another. For AA individuals, we calculated rg between TUD and 11 published traits using in-

sample LD scores derived from the MVP genotype data using cov-LDSC.87 

mtCOJO. We used mtCOJO105 to individually condition the TUD-EUR summary statistics on loci 

associated with other comorbid traits, including alcohol dependence, cannabis use disorder and 

opioid use disorder. This analysis allowed us to examine whether the genetic associations with 

TUD would be preserved when controlling for those covariate phenotypes. To test as many 

SNPs while preserving computational efficiency, we used a p value threshold of 5.00E-06, 

5.00E-08, 5.00E-06, respectively, for alcohol dependence, cannabis use disorder, and opioid 
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use disorder. We then computed genetic correlations using the TUD summary statistics 

adjusted for the covariates of interest. 

Unsupervised learning to determine TUD clustering. Previous studies have shown that 

consumption and misuse/dependence phenotypes have a distinct genetic architecture. To 

explore whether the TUD meta-analysis clustered more with consumption or 

misuse/dependence phenotypes, we used a data-driven unsupervised machine learning method 

known as agglomerative hierarchical clustering analysis (HCA).106 HCA forms clusters iteratively 

by creating groups and successively joining or splitting those groups based on a prespecified 

algorithm.106 Agglomerative nesting (AGNES) is a bottom-up process focused on individual traits 

to structure. Agglomerative clustering was chosen as this allowed us to compare different 

algorithms to maximize for the dissimilarity on each branch, with Ward’s minimum variance 

method performing best. All models were fit in R using the cluster package (version 2.1.4).106 

The product of HCA is a dendrogram, formed with multiple brackets called “branches”. 

Phenotypes on the same branch are more similar to each other based on their pairwise genetic 

associations with each other and with all other phenotypes on that branch. Branches can form 

subbranches of more specific clustering. The genetic correlations of Former Smoker and 

Smoking Initiation were reversed to show the intuitive effects against the other traits in the 

dendrogram. 

Phenome-wide association studies (PheWAS)  

Mayo Clinic Biobank. We performed a PheWAS in the Mayo Clinic Biobank (MCB).107 

Phecodes were ascertained using EHR data from 57,001 patients from the Mayo Clinic 

Biobank. EHR data for the participants was extracted on September 23, 2022 and included any 

diagnoses on or before April 6, 2020, the date patient consent was checked. The Institutional 

Review Board of Mayo Clinic approved this study. Samples were sequenced at the Regeneron 
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Genetics Center (RGC) using a custom design that additionally augments the exome capture 

with “backbone” regions intended to measure common tagging variation for purposes of GWAS. 

The backbone regions are targeted at lower depth and undergo substantial post-processing 

using proprietary algorithms that can boost genotyping quality based on shared information via 

linkage disequilibrium and population allele frequencies. The resulting GxS data was run 

through the Mayo Clinic Genotype QC pipeline. SNPs were excluded using filters for call rate 

(<95%), minor allele frequency (<0.5%), and Hardy-Weinberg Equilibrium (p<1.00E-06). 

Individuals were excluded for excessive missing genotypes (>5%), sex errors, or abnormal 

heterozygosity (<70% on multiple chromosomes). Cryptic relatedness analysis was performed 

in an iterative process using PLINK and PRIMUS to estimate IBD sharing. Highly related 

samples were removed from the sample if they had >100 closely related samples 

(PI_HAT>0.1875) or >25000 related samples (PI_HAT>0.08); the relatedness analysis was 

performed iteratively until no such samples remained. For each pair with an estimated 2nd 

degree or higher relatedness, we removed the individual with shorter length of EHR. PGS were 

calculated using LDpred2108 l using the auto feature in the bigsnpr (v1.10.4) R package. To 

evaluate the unique contribution of polygenic scores for TUD in relation to other smoking 

behaviors, we calculated PGS for SmkInit, CPD13 and FTND27 and ran additional PheWAS of 

TUD covarying for SmikInit, CPD and FTND PGS. 

Yale-Penn. We performed PheWAS in the Yale-Penn sample;47 which is a deeply phenotyped 

cohort using the Semi-Structured Assessment for Drug Dependence and Alcoholism, a detailed 

psychiatric instrument used to assess physical, psychosocial, and psychiatric manifestations of 

SUDs and comorbid psychiatric traits.109,110 This comprehensive interview includes more than 

3,500 items representing lifetime diagnostic criteria for the DSM-IV,111 DSM-5112 SUDs and 

DSM-IV111 psychiatric disorder history. Genotyping and quality control for this cohort have been 

extensively described.47,113 
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PGSs were calculated using PRS-Continuous shrinkage software (PRS-CS).114 We used 

the default setting in PRS-CS to estimate the shrinkage parameters and fixed the random seed 

to 1 for reproducibility. To identify associations between the PGS for TUD and clinical 

phenotypes, we performed a PheWAS by fitting logistic regression models for binary 

phenotypes and linear regression models for continuous phenotypes. Analyses were conducted 

using the PheWAS v0.12 R package115 adjusting for sex, median age and the first ten PCs 

within each genetic ancestry. We performed sensitivity analyses by covarying for SmkInit, 

CPD13 and FTND27 PGS. Bonferroni correction was applied for each ancestral-specific analysis 

to account for multiple testing (p<7.25E-05).  

Adolescent Brain Cognitive Development (ABCD). We performed polygenic analyses in the 

ABCD sample.116 Again using PRS-CS,117 we fitted a fixed effects model in the ABCD European 

subsample (wave 3 for phenotypes, wave 3 for genotypes), controlling for first 10 PCs, age, sex, 

site, as fixed effect covariates and family ID as random effects covariates. We included 12 

measures that showed significant rg in the adults datasets and were available in this cohort; 

these included 2 binary phenotypes (pain, “any pain last month”; and suicide attempt, 

“description”), and 10 continuous measures (from the CBCL child behavior checklist118- “CBCL 

Externalizing”, “CBCL ADHD”, “CBCL Depression”, “CBCL ADHD”, “CBCL AnxDep”; “CBCL 

AnxDis”, “CBCL OCD”; cognitive ability via the NIH cognitive toolbox total score;119 BMI; weight; 

deprivation). Results were corrected for multiple testing (p<4.0E-03). Additional genotyping, QC 

and statistical details are described in the Supplementary Material. 

Mendelian Randomization. Two-sample Mendelian randomization120,121 was used to evaluate 

the potential causal association between TUD and genetically correlated traits using samples of 

European ancestry only (without UKBB). Of the 76 traits that showed significant genetic 

correlations (Supplementary Table 31), we removed 45 that were phenotypically similar (e.g., 

BMI and obesity). From each category, we selected those traits with higher rg. Therefore, we 
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tested 31 traits for a causal relationship with TUD. We inferred causality bidirectionally using 

three methods: weighted median, inverse-variance weighted (IVW) and MR-Egger, followed by 

a pleiotropy test using the MR Egger intercept.122,123 Instrumental variants were those 

associated with the exposure after clumping (r2 = 0.01) and at p<1.0E-05. We considered causal 

effects as those for which at least two MR tests were significant after Bonferroni correction (p = 

0.05/31 = 1.61E-03) and that showed no evidence of violation of the horizontal pleiotropy test 

(MR-Egger intercept p>0.05).  

Data Availability. The full summary statistics from the meta-analyses will be available through 

dbGaP upon publication.  

Code Availability. All software used to generate results has been previously published, and 

corresponding citations are provided in the Methods. 
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