10 research outputs found

    Genetic variants affecting bone mineral density and bone mineral content at multiple skeletal sites in Hispanic children

    Get PDF
    Context: Osteoporosis is a major public health burden with significant economic costs. However, the correlates of bone health in Hispanic children are understudied. Objective: We aimed to identify genetic variants associated with bone mineral density (BMD) and bone mineral content (BMC) at multiple skeletal sites in Hispanic children. Methods: We conducted a cross-sectional genome-wide linkage analysis, genome-wide and exome-wide association analysis of BMD and BMC. The Viva La Familia Study is a family-based cohort with a total of 1030 Hispanic children (4–19 years old at baseline) conducted in Houston, TX. BMD and BMC were measured by Dual-energy X-ray absorptiometry. Results: Significant heritability were observed for BMC and BMD at multiple skeletal sites ranging between 44 and 68% (P < 2.8 × 10− 9). Significant evidence for linkage was found for BMD of pelvis and left leg on chromosome 7p14, lumbar spine on 20q13 and left rib on 6p21, and BMC of pelvis on chromosome 20q12 and total body on 14q22-23 (logarithm of odds score > 3). We found genome-wide significant association between BMC of right arm and rs762920 at PVALB (P = 4.6 × 10− 8), and between pelvis BMD and rs7000615 at PTK2B (P = 7.4 × 10− 8). Exome-wide association analysis revealed novel association of variants at MEGF10 and ABRAXAS2 with left arm and lumber spine BMC, respectively (P < 9 × 10− 7). Conclusions: We identified novel loci associated with BMC and BMD in Hispanic children, with strongest evidence for PTK2B. These findings provide better understanding of bone genetics and shed light on biological mechanisms underlying BMD and BMC variation

    Large trans-ethnic meta-analysis identifies AKR1C4 as a novel gene associated with age at menarche

    Get PDF
    STUDY QUESTION: Does the expansion of genome-wide association studies (GWAS) to a broader range of ancestries improve the ability to identify and generalise variants associated with age at menarche (AAM) in European populations to a wider range of world populations? SUMMARY ANSWER: By including women with diverse and predominantly non-European ancestry in a large-scale meta-analysis of AAM with half of the women being of African ancestry, we identified a new locus associated with AAM in African-ancestry participants, and generalised loci from GWAS of European ancestry individuals. WHAT IS KNOWN ALREADY: AAM is a highly polygenic puberty trait associated with various diseases later in life. Both AAM and diseases associated with puberty timing vary by race or ethnicity. The majority of GWAS of AAM have been performed in European ancestry women. STUDY DESIGN, SIZE, DURATION: We analysed a total of 38 546 women who did not have predominantly European ancestry backgrounds: 25 149 women from seven studies from the ReproGen Consortium and 13 397 women from the UK Biobank. In addition, we used an independent sample of 5148 African-ancestry women from the Southern Community Cohort Study (SCCS) for replication. PARTICIPANTS/MATERIALS, SETTING, METHODS: Each AAM GWAS was performed by study and ancestry or ethnic group using linear regression models adjusted for birth year and study-specific covariates. ReproGen and UK Biobank results were meta-analysed using an inverse variance-weighted average method. A trans-ethnic meta-analysis was also carried out to assess heterogeneity due to different ancestry. MAIN RESULTS AND THE ROLE OF CHANCE: We observed consistent direction and effect sizes between our meta-analysis and the largest GWAS conducted in European or Asian ancestry women. We validated four AAM loci (1p31, 6q16, 6q22 and 9q31) with common genetic variants at P 18 years) were excluded from analysis. Women may not fully recall their AAM as most of the studies were conducted many years later. Further studies in women with diverse and predominantly non-European ancestry are needed to confirm and extend these findings, but the availability of such replication samples is limited. WIDER IMPLICATIONS OF THE FINDINGS: Expanding association studies to a broader range of ancestries or ethnicities may improve the identification of new genetic variants associated with complex diseases or traits and the generalisation of variants from European-ancestry studies to a wider range of world populations. STUDY FUNDING/COMPETING INTEREST(S): Funding was provided by CHARGE Consortium grant R01HL105756-07: Gene Discovery For CVD and Aging Phenotypes and by the NIH grant U24AG051129 awarded by the National Institute on Aging (NIA). The authors have no conflict of interest to declare

    Understanding the genetic complexity of puberty timing across the allele frequency spectrum

    Get PDF
    Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding

    CYP11B1 variants influence skeletal maturation via alternative splicing.

    No full text
    We performed genome-wide association study meta-analysis to identify genetic determinants of skeletal age (SA) deviating in multiple growth disorders. The joint meta-analysis (N = 4557) in two multiethnic cohorts of school-aged children identified one locus, CYP11B1 (expression confined to the adrenal gland), robustly associated with SA (rs6471570-A; β = 0.14; P = 6.2 × 10 &lt;sup&gt;-12&lt;/sup&gt; ). rs6410 (a synonymous variant in the first exon of CYP11B1 in high LD with rs6471570), was prioritized for functional follow-up being second most significant and the one closest to the first intron-exon boundary. In 208 adrenal RNA-seq samples from GTEx, C-allele of rs6410 was associated with intron 3 retention (P = 8.11 × 10 &lt;sup&gt;-40&lt;/sup&gt; ), exon 4 inclusion (P = 4.29 × 10 &lt;sup&gt;-34&lt;/sup&gt; ), and decreased exon 3 and 5 splicing (P = 7.85 × 10 &lt;sup&gt;-43&lt;/sup&gt; ), replicated using RT-PCR in 15 adrenal samples. As CYP11B1 encodes 11-β-hydroxylase, involved in adrenal glucocorticoid and mineralocorticoid biosynthesis, our findings highlight the role of adrenal steroidogenesis in SA in healthy children, suggesting alternative splicing as a likely underlying mechanism

    Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis

    No full text
    Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency synonymous coding variant g.14900931G>A, which conferred a large effect on 25-hydroxyvitamin D levels. The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency. Individuals carrying one copy of this variant also had increased odds of multiple sclerosis in a sample of 5,927 case and 5,599 control subjects. In conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitami

    Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index.

    No full text
    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35,668 children from 20 studies in the discovery phase and 11,873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide-significance (P-value&lt;5 x 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B, and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) (Standard Error (SE) 0.007), 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503, and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value=3.12 x 10(-10)) increase in childhood body mass index in a population of 1,955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index

    Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    No full text
    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown.We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores.We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10-8) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10-10) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in stren

    Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity.

    Get PDF
    The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P &lt; 1.67 × 10(-8)) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits

    Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index

    No full text
    The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10-06/Pfemales: 3.45 × 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation
    corecore