14 research outputs found

    Disrupted functional connectivity in adolescent obesity.

    Get PDF
    BACKGROUND/OBJECTIVE: Obesity has been associated with brain alterations characterised by poorer interaction between a hypersensitive reward system and a comparatively weaker prefrontal-cognitive control system. These alterations may occur as early as in adolescence, but this notion remains unclear, as no studies so far have examined global functional connectivity in adolescents with excess weight. SUBJECTS/METHODS: We investigated functional connectivity in a sample of 60 adolescents with excess weight and 55 normal weight controls. We first identified parts of the brain displaying between-group global connectivity differences and then characterised the extent of the differences in functional network integrity and their association with reward sensitivity. RESULTS: Adolescent obesity was linked to neuroadaptations in functional connectivity within brain hubs linked to interoception (insula), emotional memory (middle temporal gyrus) and cognitive control (dorsolateral prefrontal cortex) (pFWE < 0.05). The connectivity between the insula and the anterior cingulate cortex was reduced in comparison to controls, as was the connectivity between the middle temporal gyrus and the posterior cingulate cortex and cuneus/precuneus (pFWE < 0.05). Conversely, the middle temporal gyrus displayed increased connectivity with the orbitofrontal cortex (pFWE < 0.05). Critically, these networks were correlated with sensitivity to reward (p < 0.05). CONCLUSIONS: These findings suggest that adolescent obesity is linked to disrupted functional connectivity in brain networks relevant to maintaining balance between reward, emotional memories and cognitive control. Our findings may contribute to reconceptualization of obesity as a multi-layered brain disorder leading to compromised motivation and control, and provide a biological account to target prevention strategies for adolescent obesity

    The nature of memory impairment in multiple sclerosis: understanding different patterns over the course of the disease

    Get PDF
    IntroductionMemory deficit is one of the most common and severe cognitive impairments in patients with multiple sclerosis and can greatly affect their quality of life. However, there is currently no agreement as to the nature of memory deficit in multiple sclerosis.MethodsThis cross-sectional study, carried out at the Dr. Josep Trueta and Santa Caterina hospitals in Girona (Spain), was designed to determine the semiology of verbal memory deficit in the different stages of the disease. To this end, a modification of Rey’s verbal auditory test was created by introducing two recognition trials between the five learning trials, thus monitoring what happens in terms of acquisition versus the retrieval of information during the learning phase. Linear regression models were used to evaluate verbal episodic memory performance between-groups adjusting results by age, sex, educational level, and the presence of anxiety and/or depressive symptoms.Results133 patients with multiple sclerosis, clinically isolated syndrome, and radiologically isolated syndrome and 55 healthy controls aged 18–65 years were assessed. It was observed that the memory processes of multiple sclerosis patients worsen with the progression of the disease. In this respect, patients in pre-diagnostic phases (radiologically isolated syndrome and clinically isolated syndrome) show no differences in verbal episodic memory compared to the healthy controls. Patients in the inflammatory stage (relapsing–remitting multiple sclerosis) show a previously learned information retrieval deficit, while patients in progressive stages (secondary progressive multiple sclerosis and primary progressive multiple sclerosis) do not even correctly acquire information.DiscussionThese results provide significant information to assist in understanding the nature of memory deficits in multiple sclerosis over the course of the disease. These results are discussed in terms of possible cognitive rehabilitation strategies depending on the evolutive stage and are related to neuropathological mechanisms involved in the progression of the disease

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill &amp; Melinda Gates Foundation

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Forouzanfar MH, Afshin A, Alexander LT, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. LANCET. 2016;388(10053):1659-1724.Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57.8% (95% CI 56.6-58.8) of global deaths and 41.2% (39.8-42.8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211.8 million [192.7 million to 231.1 million] global DALYs), smoking (148.6 million [134.2 million to 163.1 million]), high fasting plasma glucose (143.1 million [125.1 million to 163.5 million]), high BMI (120.1 million [83.8 million to 158.4 million]), childhood undernutrition (113.3 million [103.9 million to 123.4 million]), ambient particulate matter (103.1 million [90.8 million to 115.1 million]), high total cholesterol (88.7 million [74.6 million to 105.7 million]), household air pollution (85.6 million [66.7 million to 106.1 million]), alcohol use (85.0 million [77.2 million to 93.0 million]), and diets high in sodium (83.0 million [49.3 million to 127.5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Copyright (C) The Author(s). Published by Elsevier Ltd

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990�2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors�the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25 over the same period. All risks jointly evaluated in 2015 accounted for 57·8 (95 CI 56·6�58·8) of global deaths and 41·2 (39·8�42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million 192·7 million to 231·1 million global DALYs), smoking (148·6 million 134·2 million to 163·1 million), high fasting plasma glucose (143·1 million 125·1 million to 163·5 million), high BMI (120·1 million 83·8 million to 158·4 million), childhood undernutrition (113·3 million 103·9 million to 123·4 million), ambient particulate matter (103·1 million 90·8 million to 115·1 million), high total cholesterol (88·7 million 74·6 million to 105·7 million), household air pollution (85·6 million 66·7 million to 106·1 million), alcohol use (85·0 million 77·2 million to 93·0 million), and diets high in sodium (83·0 million 49·3 million to 127·5 million). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens

    The contribution of brain imaging to the understanding of psychopathy

    Get PDF
    Psychopathy is a personality type characterized by both callous emotional dysfunction and deviant behavior that affects society in the form of actions that harm others. Historically, researchers have been concerned with seeking data and arguments to support a neurobiological foundation of psychopathy. In the past few years, increasing research has begun to reveal brain alterations putatively underlying the enigmatic psychopathic personality. In this review, we describe the brain anatomical and functional features that characterize psychopathy from a synthesis of available neuroimaging research and discuss how such brain anomalies may account for psychopathic behavior. The results are consistent in showing anatomical alterations involving primarily a ventral system connecting the anterior temporal lobe to anterior and ventral frontal areas, and a dorsal system connecting the medial frontal lobe to the posterior cingulate cortex/precuneus complex and, in turn, to medial structures of the temporal lobe. Functional imaging data indicate that relevant emotional flow breakdown may occur in both these brain systems and suggest specific mechanisms via which emotion is anomalously integrated into cognition in psychopathic individuals during moral challenge. Directions for future research are delineated emphasizing, for instance, the relevance of further establishing the contribution of early life stress to a learned blockage of emotional self-exposure, and the potential role of androgenic hormones in the development of cortical anomalies

    Endocannabinoid signaling of homeostatic status modulates functional connectivity in reward and salience networks

    No full text
    Rationale Endocannabinoids are well poised to regulate crosstalk between energy sensing of hunger and satiety and reward-driven motivation. Objectives Here, we aimed to unravel associations between plasma endocannabinoids and brain connectivity in homeostatic and reward circuits across hunger and satiety states. Methods Fifteen participants (7 females) underwent two counter-balanced resting-state functional magnetic resonance imaging scans, one after overnight fasting and one after consumption of a standardized filling meal (satiety). Before each scan, we drew blood to measure plasma endocannabinoid concentrations (anandamide [AEA], anandamide-derived POEA, and 2-arachidonoylglycerol [2-AG]), analyzed with liquid chromatography tandem mass spectrometry. Results We found that AEA levels were associated with increased connectivity between the lateral hypothalamus and the ventral striatum during satiety. Furthermore, fasting AEA levels correlated with connectivity between the ventral striatum and the anterior cingulate cortex and the insula. Conclusions Altogether, results suggest that peripheral AEA concentrations are sensitive to homeostatic changes and linked to neural communication in reward and salience networks. Findings may have significant implications for understanding normal and abnormal interactions between homeostatic input and reward valuation

    Emotion regulation and excess weight: impaired affective processing characterized by dysfunctional insula activation and connectivity

    Get PDF
    Emotion-regulation strategies are understood to influence food intake. This study examined the neurophysiological underpinnings of negative emotion processing and emotion regulation in individuals with excess weight compared to normal-weight controls. Fifteen participants with excess-weight (body mass index >25) and sixteen normal-weight controls (body mass index 18-25) performed an emotion-regulation task during functional magnetic resonance imaging. Participants were exposed to 24 negative affective or neutral pictures that they were instructed to Observe (neutral pictures), Maintain (sustain the emotion elicited by negative pictures) or Regulate (down-regulate the emotion provoked by negative pictures through previously trained reappraisal techniques). When instructed to regulate negative emotions by means of cognitive reappraisal, participants with excess weight displayed persistently heightened activation in the right anterior insula. Decreased responsivity was also found in right anterior insula, the orbitofrontal cortex and cerebellum during negative emotion experience in participants with excess weight. Psycho-physiological interaction analyses showed that excess-weight participants had decreased negative functional coupling between the right anterior insula and the right dlPFC, and the bilateral dmPFC during cognitive reappraisal. Our findings support contentions that excess weight is linked to an abnormal pattern of neural activation and connectivity during the experience and regulation of negative emotions, with the insula playing a key role in these alterations. We posit that ineffective regulation of emotional states contributes to the acquisition and preservation of excess weight

    Increased brain fractional perfusion in obesity using intravoxel incoherent motion (IVIM) MRI metrics

    No full text
    Altres ajuts: acords transformatius de la UABObjective: This research seeks to shed light on the associations between brain perfusion, cognitive function, and mental health in individuals with and without obesity. Methods: In this study, we employed the noninvasive intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) technique to examine brain fractional perfusion (FP) in two groups: individuals with obesity (N = 72) and healthy controls (N = 66). Additionally, we investigated potential associations between FP, cognitive function, and depressive symptoms in the participants with and without obesity. Finally, artificial intelligence algorithms (Boruta analysis) were also used. Results: Participants with obesity exhibited increased FP within dopaminergic brain circuits, particularly involving prefrontal cortex areas, anterior and posterior sections of the cingulate cortex, the right striatum, and the midbrain. Additionally, these individuals demonstrated lower working memory and higher depressive symptoms compared to the control group. Notably, higher FP in the inferior temporal and occipital cortices correlated with greater depressive symptoms, whereas increased FP in the right ventral caudate and the midbrain was associated with better working memory performance. A link between inflammatory and metabolic variables, with a particular emphasis on monocytes, and FP in obesity was also evidenced by Boruta analysis. Conclusions: Increased brain perfusion in individuals with obesity is associated with cognitive function and mental health through interaction with metabolic and inflammatory factors

    Obesity Impairs Short-Term and Working Memory through Gut Microbial Metabolism of Aromatic Amino Acids

    No full text
    The gut microbiome has been linked to fear extinction learning in animal models. Here, we aimed to explore the gut microbiome and memory domains according to obesity status. A specific microbiome profile associated with short-term memory, working memory, and the volume of the hippocampus and frontal regions of the brain differentially in human subjects with and without obesity. Plasma and fecal levels of aromatic amino acids, their catabolites, and vegetable-derived compounds were longitudinally associated with short-term and working memory. Functionally, microbiota transplantation from human subjects with obesity led to decreased memory scores in mice, aligning this trait from humans with that of recipient mice. RNA sequencing of the medial prefrontal cortex of mice revealed that short-term memory associated with aromatic amino acid pathways, inflammatory genes, and clusters of bacterial species. These results highlight the potential therapeutic value of targeting the gut microbiota for memory impairment, specifically in subjects with obesity
    corecore