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Background/objective: Obesity has been associated with brain alterations characterised by poorer interaction be-
tween a hypersensitive reward system and a comparatively weaker prefrontal-cognitive control system. These
alterationsmay occur as early as in adolescence, but this notion remains unclear, as no studies so far have exam-
ined global functional connectivity in adolescents with excess weight.
Subjects/methods:We investigated functional connectivity in a sample of 60 adolescents with excess weight and
55 normal weight controls. We first identified parts of the brain displaying between-group global connectivity
differences and then characterised the extent of the differences in functional network integrity and their associ-
ation with reward sensitivity.
Results:Adolescent obesity was linked to neuroadaptations in functional connectivity within brain hubs linked to
interoception (insula), emotional memory (middle temporal gyrus) and cognitive control (dorsolateral prefron-
tal cortex) (pFWE b 0.05). The connectivity between the insula and the anterior cingulate cortex was reduced in
comparison to controls, as was the connectivity between the middle temporal gyrus and the posterior cingulate
cortex and cuneus/precuneus (pFWEb 0.05). Conversely, themiddle temporal gyrus displayed increased connec-
tivity with the orbitofrontal cortex (pFWE b 0.05). Critically, these networks were correlated with sensitivity to
reward (p b 0.05).
Conclusions: These findings suggest that adolescent obesity is linked to disrupted functional connectivity in brain
networks relevant tomaintaining balance between reward, emotionalmemories and cognitive control. Our find-
ings may contribute to reconceptualization of obesity as a multi-layered brain disorder leading to compromised
motivation and control, and provide a biological account to target prevention strategies for adolescent obesity.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Obesity is the most important health concern in the world today, as
it contributes to diseases such as type-2 diabetes, cardiovascular dis-
ease, musculoskeletal conditions, some cancers and dementias (Guh et
al., 2009; Whitmer et al., 2008). When obesity manifests during adoles-
cence, the risk of developing these medical conditions during lifetime is
significantly increased (Inge et al., 2013; Reis et al., 2013). Obesity has
been traditionally defined as a physiological imbalance between energy
consumption and energy expenditure, and thus most research on its
neural underpinnings has been limited to homeostatic centres, such as
iences, Monash University, 18
ralia.
ejo-Garcia).

. This is an open access article under
the hypothalamus (Horvath, 2005). However, obesity is arguably linked
to abnormal communication betweenmultiple brain areas implicated in
perception of homeostatic signals, reward related motivation and cog-
nitive control (Berthoud, 2011; Jensen and Kirwan, 2015; Mata et al.,
2015). Given that adolescence is characterised by a unique brain net-
work organisation linked to a psychological imbalance between en-
hanced reward sensitivity and reduced cognitive control, (Paus et al.,
2008; Van Leijenhorst et al., 2010) and thus to sensitised reactivity to-
wards highly appetising food, (Stice et al., 2011) research on brain net-
work organisation can provide important insights for understanding
and prevention of adolescent obesity.

Resting-state connectivity approaches have successfully identified
alterations in functional brain networks within populations with obesi-
ty: obese individuals compared to normal weight controls show in-
creased connectivity between regions involved in metabolic sensing
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and interoception (i.e., hypothalamus, insula) and regions involved in
reward processing (i.e., striatum and orbitofrontal cortex or OFC)
(Coveleskie et al., 2015; Kullmann et al., 2014; Wijngaarden et al.,
2015). Moreover, obese individuals display decreased connectivity in
brain regions involved in interoceptive processing and cognitive control
(Kullmann et al., 2012). However, these studies have exclusively
assessed adult samples, and therefore it remains unknown if brain con-
nectivity alterations are manifest in adolescent populations. Only one
study has previously assessed resting-state functional connectivity in
obese adolescents through magnetoencephalography (MEG), showing
that obese adolescents display increased connectivity in frontal, tempo-
ral and occipital regions compared to normal weight controls (Olde
Dubbelink et al., 2008). However, the application of novel functional
magnetic resonance imaging (fMRI)methods formeasuring both global
and regional connectivity can provide substantially more precise map-
ping of the connectivity alterations that characterises adolescent
obesity.

In this study, we apply (i) a large-scale global connectivity approach
to identify the key brain hubs that distinguish adolescents with obesity
from normal weight controls, and (ii) data driven seed-based connec-
tivity analyses to describe specific alterations between these networks,
and their correlation with sensitivity to reward. We hypothesise that
obese adolescents will have abnormal global connectivity in brain
hubs implicated in interoception (insula), motivation (striatum, limbic
regions, OFC) and cognitive control (dorsolateral prefrontal cortex or
DLPFC), and that increased seed-based functional connectivity between
regions involved in interoception and motivation, and decreased func-
tional connectivity between regions involved in interoception/motiva-
tion and cognitive control would be associated with higher sensitivity
to reward.

2. Materials and methods

2.1. Subjects

One hundred and fifteen adolescents participated in this study: 55
with normal weight (32 females, 23 males) and 60 with excess weight
(38 females, 22 males) based on standard BMI cut-offs (Cole and
Lobstein, 2012). Both groups had statistically similar distributions in
terms of age, years of education and biochemical measures (Table 1).
Participants were recruited through the Hospital Virgen de las Nieves
(Granada, Spain) and through educational and community services in
the same geographical area. The eligibility criteria were age between
12 and 17 years old, and BMI between 18 and 40. The exclusion criteria
were as follows: (i) chronic medical conditions (i.e., diabetes, hyperten-
sion) indicated by self-reports and blood count andblood pressuremea-
sures, (ii) mental health problems indicated by the Millon Adolescent
Table 1
Demographics, blood count based biochemical indices and self-report scores of excess weight

Normal weight (n = 55)

Mean SD

Age (years) 15.11 1.82
Height (m) 164.17 9.34
Weight (kg) 56.60 10.68
BMI (kg/m2) 20.84 2.39

Biochemical parameters
Insulin 57.12 119.88
Basal glucose 92.00 6.92
Triglycerides 63.89 27.91
Cholesterol 145.97 19.66

Sensitivity to punishment and reward questionnaire
Sensitivity to reward 10.18 5.10
Sensitivity to punishment 11.44 4.15

⁎ p b 0.05.
Clinical Inventory, (Aguirre, 2004) (iii) history of head trauma indicated
by self-reporting, and (iv) contraindications to MRI scanning, such as
claustrophobia and implanted ferromagnetic objects. This studywas ap-
proved by the Human Research Ethics Committee of the University of
Granada and all subjects and their parents provided written informed
consent.

2.2. Procedure

Assessments were conducted during two different sessions at least
7 days apart. During the first session the participants were screened
and completed the self-report questionnaires. The second session in-
volved resting-state fMRI scanning.

2.2.1. Self-report questionnaire
The Sensitivity to Punishment and Sensitivity to Reward Question-

naire (SPSRQ) (Torrubia et al., 2001) is a 48 items self-report question-
naire comprising two subscales: Sensitivity to Punishment (e.g., “Are
you often afraid of new or unexpected situations?”), and Sensitivity to
Reward (e.g., “Do you sometimes do things for quick gains?”). Partici-
pants respond using a dichotomous scale (“yes” or “no”), and the
score of each subscale is the result of the sum of the affirmative re-
sponses. This questionnaire has showed adequate internal consistency,
and its scores hold adequate validity (Caseras et al., 2003). The outcome
measure of interest was the score of sensitivity to reward, which was
correlated with brain connectivity measures.

2.2.2. MRI data acquisition
All the MRI scans took place between 4 and 6 p.m., after the main

meal of the day (lunch is the main meal of the day in Spain and typically
occur between 2 and 3 p.m.). The resting-state sequence lasted 6 min,
and participants were instructed to keep awake with their eyes closed.
Weused a 3.0 Tesla clinicalMRI scanner, equippedwith an eight-channel
phased-array head coil (Intera Achieva Philips Medical Systems, Eindho-
ven, The Netherlands). A T2*-weighted echo-planar imaging (EPI) was
obtained (TR = 2000 ms, TE = 35 ms, FOV = 230 × 230 mm,
96 × 96 pixel matrix; flip angle = 90°, 21 4-mm axial slices, 1-mm
gap, 180 whole-brain volumes). The sequence included four additional
dummy volumes to allow magnetization to reach equilibrium.

2.3. Imaging analyses

2.3.1. Preprocessing
Functional imaging data were preprocessed and analyzed using

statistical parametric mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/) implemented in MATLAB R2007b (MathWorks,
Natick, MA, USA). Preprocessing steps involved motion correction,
and normal weight groups.

Excess weight (n = 60) Test

Mean SD t p

14.67 1.70 1.345 0.181
163.62 8.85 0.327 0.744
78.69 13.93 9.482 0.000⁎

29.26 3.84 −14.242 0.000⁎

49.76 59.53 0.279 0.781
93.26 5.108 −0.832 0.409
71,37 29.81 −1.013 0.315
158.00 28.35 −1.990 0.051

9.95 5.09 0.244 0.808
9.58 3.72 2.527 0.013⁎

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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spatial normalization to the standard SPM-EPI template and smoothing
using a Gaussian filter (FWHM 8 mm). Data was resliced to
6.3 × 7.6 × 6.8mmfor the global functional connectivity degree analysis
and to 2mm isotropic resolution for the seed-based analysis inMontre-
al Neurological Institute (MNI) space. We used a relatively large voxel
size for the global functional connectivity degree analysis to optimize
computational efficiency. Once broad differences were established, we
decreased the voxel size to characterise in detail regional connectivity
differences for each of the areas we found differences in the first
analysis.

2.3.2. Global functional connectivity degree mapping
To obtain a quantitative measure of the extent each voxel is con-

nected to every other voxel in the brain we used a global brain con-
nectivity degree approach (Sepulcre et al., 2010; Pujol et al., 2014;
Contreras-Rodríguez et al., 2014). Briefly, the analysis was restricted
to the analysis of spontaneous BOLD signal fluctuations in gray mat-
ter voxels (those with N40% gray matter tissue probability in SPM8
MNI templates), while signal fluctuations in white matter, cerebro-
spinal fluid and the whole brain (the sum of the three tissue types)
were included as nuisance covariates. Additionally, a high-pass filter
set at 128 s was used to remove low-frequency drifts of less than ap-
proximately 0.008 Hz. Each voxel's fMRI signal time series was corre-
lated with every other voxel's time series, resulting in a Pearson
correlation coefficient r-matrix (2938 voxels × 2938 correlations
each voxel), which was then binarized with a threshold of | r | N 0.3
(thus including positive and negative correlations). Connectivity de-
gree of each voxel was finally expressed in relative values as the ratio
of total supra-threshold connections over all the possible connec-
tions. Individual connectivity maps were then included in a group
(second-level) random-effects analysis to assess for within and be-
tween-group effects.

2.3.3. Seed based analysis
Subsequently, significant clusters from the above group analyses

were used in standard seed-based whole-brain functional connectivity
analyses aimed at describing the specific pattern of connectivity under-
pinning the global functional connectivity degree alterations. Each seed
was defined as a 3.5 mm diameter sphere (sampling approximately
25 voxels) constructed in MNI stereotaxic space using MarsBaR
region-of-interest toolbox (Brett et al., 2002) and its signal value was
calculated as the average signal of all the voxels included at each seed
sphere. Functional connectivity maps were estimated for each of the
selected seeds with regression analyses utilising the same nuisance var-
iables used in the global connectivity analysis (white matter, cerebro-
spinal fluid and global brain signal fluctuations). Likewise, a high-pass
filter set at 128 s was used to remove low-frequency drifts of less than
approximately 0.008 Hz. Contrast images were generated for each sub-
ject by estimating the regression coefficient between the seed time se-
ries and each brain voxel signal. Resulting images were then included
in a group (second-level) random-effects analyses to assess for within
and between-group effects.

2.3.4. Correlation analyses with personality and clinical scores
Voxel-wise linear regression analyses were performed to assess be-

tween-group differences in the correlation between the scores of sensi-
tivity to reward and the voxel-wise functional connectivity estimates of
each seed region of interest. The correlationswere conducted with each
of the seeds showing significant between-group differences.

2.3.5. Statistical significance thresholding criteria
Statistical significance of all imaging comparisons and correlations

was determined by 1000 Monte Carlo simulations using AlphaSim as
implemented in the SPM REST toolbox (Song et al., 2011). The input pa-
rameters to AlphaSim were default parameters as defined in Ward
(2000) and included a gray matter mask volume of 167,265 voxels
(2 × 2 × 2 mm), an individual voxel threshold probability of 0.005, a
cluster connection radius of 5 mm and the estimated smoothness of
each T map after model estimation. The minimum cluster sizes were
3 voxels for the global connectivity degree analysis and 125 voxels for
the seed-based functional connectivity analysis to satisfy a whole-
brain family-wise error rate correction of pFWE b 0.05. Cluster threshold
in the correlational analyses were calculated in the same manner and
were considered significant if they exceeded a threshold of 125 voxels.

3. Results

3.1. Global connectivity

To obtain a quantitativemeasure of the extent each voxel is connect-
ed to every other voxel in the brain we used a global brain connectivity
degree approach. Compared with normal weight controls, excess
weight adolescents showed reduced global connectivity in a region
encompassing the right insula and the frontal operculum (peak at x, y,
z = 55, 23, 9, t = 3.63, 20 voxels), the left middle temporal cortex
(peak at x, y, z = −53, −8, −18, t = 3.65, 3 voxels) and the right
DLPFC (peak at x, y, z = 29, 53, 23, t = 2.83, 4 voxels) (Fig. 1). We
used the coordinates of the brain regions showing statistical differences
between groups as seeds for the subsequent seed-based connectivity
analyses.

3.2. Seed-based connectivity

3.2.1. Within-group
Connectivity analyses between each seed (i.e., insula/operculum,

middle temporal cortex and DLPFC) and the rest of the brain produced
similar maps in the two groups (Table S1 and Fig. S1). A summary of
our findings follows.

3.2.1.1. Insula/operculum seed. Both groups showed positive correlations
with frontal and temporal regions, and negative correlations with the
fusiform and posterior regions such as the posterior cingulate cortex
and the cuneus/precuneus.

3.2.1.2. Middle temporal cortex seed. Both groups showed positive corre-
lations with the middle temporal cortex and negative correlations with
the parietal and DLPFC.

3.2.1.3. DLPFC seed. Both groups showed positive correlations with fron-
tal regions such as the DLPFC, the insula or the supramarginal gyrus and
negative correlations with posterior regions such as the cerebellum, the
precuneus and the postcentral gyrus.

3.2.2. Between-groups comparisons

3.2.2.1. Insula/operculum seed. Excess weight adolescents displayed re-
duced connectivity between the insula/operculum and the right dorsal
anterior cingulate cortex and supplementary motor area. In addition,
excess weight adolescents showed increased connectivity between
this seed and the left cuneus (Fig. 2A; Table 2).

3.2.2.2. Middle temporal cortex seed. Excessweight adolescents displayed
reduced connectivity between themiddle temporal cortex and the pos-
terior cingulate cortex and cuneus/precuneus. In addition, excess
weight adolescents showed increased connectivity between this seed
and the OFC bilaterally, and the right inferior and middle frontal gyri,
which in the right hemisphere also encompassed the insula (Fig. 2B;
Table 2).

3.2.2.3. DLPFC seed. Excess weight adolescents displayed increased con-
nectivity between the DLPFC and the right primary visual cortex (Fig.
2C; Table 2).



Fig. 1.Reduced global connectivity in excessweight adolescents comparedwith normalweight controls. The color scale represents t-values. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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3.2.3. Association between seed-based connectivity and sensitivity to
reward

3.2.3.1. Insula/operculum seed. Sensitivity to reward was negatively as-
sociated with connectivity between the insula/operculum and the
right superior frontal gyrus (peak at x, y, z = 22, 22, 36, t = 4.2,
k = 447) in excess weight adolescents (r = −0.406, p = 0.001)
whereas this association was positive in normal weight controls
(r = 0.320, p = 0.017) (Fig. 3A). Despite differences in the direction
of correlations, the Fisher's test of significance of the interaction ef-
fect was not significant (p = 0.60).

3.2.3.2. Middle temporal cortex seed. Sensitivity to reward was negatively
associated with connectivity between the middle temporal cortex and
the left frontal operculum (peak at x, y, z = −40, 4, 22, t = 3.6, k =
154) in excess weight adolescents (r = −0.384, p = 0.002) whereas
this association was positive and non-significant in normal weight con-
trols (r = 0.245, p = 0.072) (Fig. 3B). The Fisher's test of significance of
the interaction effect was not significant (p = 0.42).

3.2.3.3. DLPFC seed. We did not find significant correlations in this seed.

4. Discussion

We found that adolescents who are overweight and obese dis-
play reduced global functional connectivity in the insula/operculum,
the middle temporal cortex and the DLPFC, compared to normal
weight controls. In addition, they show reduced regional seed-
based connectivity between the insula/operculum and the dorsal
anterior cingulate cortex and supplementary motor area, and
between the middle temporal cortex and the posterior cingulate
cortex and the cuneus/precuneus; and increased seed-based con-
nectivity between the insula/operculum and the cuneus, between
the middle temporal cortex and the OFC, and between the DLPFC
seed and the primary visual cortex. Lower connectivity between
the insula/operculum seed and the superior frontal gyrus and be-
tween the middle temporal cortex seed and the frontal operculum
correlated with greater sensitivity to reward within the overweight
and obese adolescents. These findings support our original assump-
tions, and suggest that adolescent obesity is linked to abnormal con-
nectivity between brain regions involved in interoception and
motivation and brain regions involved in cognitive control, in asso-
ciation with reward sensitivity.

Our global connectivity findings reveal a prominent role of brain
hubs linked to interoception (i.e., insula), emotional memory (i.e.,
middle temporal gyrus) and cognitive control (i.e., DLPFC) in
adolescent obesity. Overall, these findings support the notion that
adolescent obesity is associated with multi-layered alterations in
neural networks relevant to the detection of the motivational signif-
icance of homeostatic states, the representation of affective memo-
ries and the implementation of cognitive control over reward cues
(Mata et al., 2015; Volkow et al., 2008). Since alterations were spread
across different higher-order brain systems, our findings indicate
that obesity is best characterised by deficits in brain networks that
are relevant for coding higher-level stimulus significance and
exerting top-down executive control, and not only by deficits in
brain networks regulating metabolic needs (Verdejo-Garcia et al.,
2010). Remarkably, these alterations are manifest in adolescence.
Since the present study is cross-sectional, we cannot draw definite
conclusions about the causality of these early brain alterations. How-
ever, given that excess weight participants were systematically
assessed to rule out other health problems that may have a negative
impact on brain health, and based on recent evidence demonstrating
that adiposity is longitudinally associated with deterioration of brain
health, (Chuang et al., 2015a; Chuang et al., 2015b) it is biologically
plausible that the alterations in connectivity are related to obesity.
Thus, they may significantly contribute to long-term obesity prob-
lems that span beyond adolescence.

Seed-based connectivity findings indicate that obese adolescents
have deficits in regional networks relevant for cognitive control.
Functional connectivity between the insula and the dorsal anterior
cingulate cortex has been linked to attention and successful inhibito-
ry control, (Cai et al., 2014; Cauda et al., 2012; Taylor et al., 2009) and
thus reduced connectivity in this network may contribute to atten-
tional biases towards food cues and diminished top-down control
of eating in adolescents with obesity (Liang et al., 2014; Shank et
al., 2015). This interpretation, related to attentional salience, is sim-
ilarly supported by the finding of increased connectivity between the
insula and a set of regions implicated in visual processing such as the
cuneus and the primary visual cortex (Heatherton and Kelley, 2015).
Since the insula is thought to maintain a pivotal role in mediating the
function of other networks, (Jilka et al., 2014) our findings suggest
that adolescent obesity is characterised by increased efficiency in in-
teractions between the insula and sensory regions, at the expense of
efficiency in the interactions between insula and cognitive control
regions.

Seed-based connectivity findings also indicate that obese adoles-
cents have deficits in regional networks relevant for emotionalmemory.
Functional connectivity between the middle temporal cortex and the
OFC, insula and middle frontal gyrus (increased in obese adolescents)
has been linked to the generation of emotional states, (Kohn et al.,
2014) whereas connectivity between the middle temporal cortex and



Fig. 2. Functional connectivity of the seeds found in excess weight adolescents compared with normal weight controls. A. Functional connectivity of the insula/operculum seed. B.
Functional connectivity of the middle temporal cortex seed. C. Functional connectivity of the DLPFC seed. The color scale represents t-values with warm and cool colors indicating
increased and reduced connectivity, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the posterior cingulate cortex and the precuneus/cuneus (decreased in
obese adolescents) has been linked to encoding of new events and se-
manticmemory (Kim, 2013; Binder et al., 2009). Since the cognitive sys-
tems controlling emotional salience and semantic memory normally
interact to update memories of emotional material, (Talmi and
Moscovitch, 2004) ourfindings suggest that adolescent obesity is linked
to an imbalance between the increased function of the network tracking
emotional salience and the diminished function of the network that
manages semantic knowledge. Speculatively, this may contribute to
the “stickiness” of cached representations of emotional (i.e., rewarding)
food memories in obesity.

Correlational findings support our main hypothesis that insula and
middle temporal regional networks are linked to increased reward sen-
sitivity in adolescent obesity. Connectivity between the insula andmid-
dle frontal regions was negatively associated with sensitivity to reward,
in fitting with our suggestion that lower connectivity between insula
and frontal regions can sensitise reward systems versus cognitive con-
trol systems in obese adolescents, similar to what has been described
in adults (Lips et al., 2014). Moreover, connectivity between themiddle
temporal cortex and frontal operculum gustatory aspects was also neg-
atively associated with sensitivity to reward. Since this network has
been linked to evaluation and updating of the salience of food stimuli,
(Ziauddeen et al., 2012) findings are consistent with the notion that
poor function of the network sensitises reward-related “cached” repre-
sentations (Verdejo-Garcia et al., 2012). In contrast to negative correla-
tions among excess weight participants, both networks (insula-middle
frontal, and middle temporal-frontal operculum) had positive correla-
tions with sensitivity to reward in healthy weight controls, although
only the insula –middle frontal correlationwas significant. The opposite
direction of correlations suggest that obesity is linked to distortion of
the normal function of these networks, i.e., normal interaction between
the insula and the middle frontal gyrus would contribute to



Table 2
Between-group differences in functional connectivity.

Normal weight N excess weight x y z k t

Insula/operculum seed
R dorsal ACC 12 12 32 1069 4.03
L cuneus −12 −74 26 131 3.30

Middle temporal cortex seed
L PCC −4 −32 28 181 3.91
R cuneus/precuneus 12 −66 30 302 3.24
R orbitofrontal cortex 36 52 −8 454 3.75
L orbitofrontal cortex −20 44 10 199 3.44
R middle frontal gyrus 52 14 44 222 3.61
R inferior frontal gyrus/insula 46 22 0 2490 4.61

Dorsolateral prefrontal cortex seed
R occipital cortex 8 −92 −2 133 3.56

Anatomical coordinates are given in Montreal Neurological Institute (MNI) Atlas space. R = right; L = left; ACC = anterior cingulate cortex; PCC = posterior cingulate cortex; OFC =
orbitofrontal cortex.
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interoceptive valuation of reward value, whereas this function is re-
versed in obesity (Mata et al., 2015). However, since the interaction ef-
fects were not significant, these findings must be interpreted with
caution. Moreover, we did not found significant correlations between
DLPFC connectivity and sensitivity to reward, which is consistent with
the notion that this regions is primarily involved in cognitive control
rather than stimulus valuation (Stice et al., 2011; Volkow et al., 2008).

In conclusion, we found that adolescent obesity is linked to
disrupted organisation of functional connectivitywithin the insula,mid-
dle temporal cortex and DLPFC networks, which are relevant for the
Fig. 3. Clusters andplots of the interactions found between the connectivity of the seeds and the
of the interaction found between the measure of sensitivity to reward and the connectivity bet
interaction found between the measure of sensitivity to reward and the connectivity between
detection and representation of motivationally significant signals and
top-down cognitive control of reward. Since these findings aremanifest
in early adolescence, future studies are warranted to explore whether
cognitive training and brain stimulation techniques targeting these net-
works can shift the progression of obesity.
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