814 research outputs found

    Handbook of good practices for participation in Codex Alimentarius meetings.

    Get PDF
    Índice: 1 Descripción de la organización. 2 Funcionamiento de los comités del CODEX. 3 Procedimientos internos. 4 Documentos del Codex Alimentarius. 5 Proceso de trámites para la aprobación de documentos en el Codex Alimentarius. 6 Cómo prepararse antes de las reuniones? 7 Cómo preparo mis intervenciones para cada punto de agenda? 8 La reunión.Publicado en inglés y español.Este documento es un manuel de buenas prácticas de participación en las reuniones del Codex Alimentarius, el cual presenta una descripción de la organización Codex Alimentarius, sus principios, estructura y la importancia del Codex Alimentarious para el país. Además se presentan los procedimientos internos, como lo son actas, quórum, presentación de propuestas, entre otras. Igualmente presenta los documentos que genera el Codex Alimentarius y cuál es el proceso para la aprobación de documentos de esta organización.This document is a manual of good practices for participation in Codex Alimentarius meetings, which presents a description of the Codex Alimentarius organization, its principles, structure and the importance of Codex Alimentarious for the country. In addition, the internal procedures are presented, such as minutes, quorum, presentation of proposals, among others. It also presents the documents generated by the Codex Alimentarius and what is the process for the approval of documents of this organization

    Anti-microbial Use in Animals: How to Assess the Trade-offs

    Get PDF
    Antimicrobials are widely used in preventive and curative medicine in animals. Benefits from curative use are clear – it allows sick animals to be healthy with a gain in human welfare. The case for preventive use of antimicrobials is less clear cut with debates on the value of antimicrobials as growth promoters in the intensive livestock industries. The possible benefits from the use of antimicrobials need to be balanced against their cost and the increased risk of emergence of resistance due to their use in animals. The study examines the importance of animals in society and how the role and management of animals is changing including the use of antimicrobials. It proposes an economic framework to assess the trade-offs of anti-microbial use and examines the current level of data collection and analysis of these trade-offs. An exploratory review identifies a number of weaknesses. Rarely are we consistent in the frameworks applied to the economic assessment anti-microbial use in animals, which may well be due to gaps in data or the prejudices of the analysts. There is a need for more careful data collection that would allow information on (i) which species and production systems antimicrobials are used in, (ii) what active substance of antimicrobials and the application method and (iii) what dosage rates. The species need to include companion animals as well as the farmed animals as it is still not known how important direct versus indirect spread of resistance to humans is. In addition, research is needed on pricing antimicrobials used in animals to ensure that prices reflect production and marketing costs, the fixed costs of anti-microbial development and the externalities of resistance emergence. Overall, much work is needed to provide greater guidance to policy, and such work should be informed by rigorous data collection and analysis systems

    Changes in cocoa properties induced by the alkalization process: A review

    Full text link
    [EN] Alkalization, also known as "Dutching," is an optional, but very useful, step taken in the production chain of cocoa to darken its color, modify its taste, and increase natural cocoa solubility. Over the years, various attempts have been made to design new and more effective alkalization methods. Moreover, different authors have attempted to elucidate the impact of alkalization on the physicochemical, nutritional, functional, microbiological, and sensory characteristics of alkalized cocoa. The aim of this review is to provide a clear guide about not only the conditions that can be applied to alkalize cocoa, but also the reported effects of alkalization on the nutritional, functional, microbiological, and sensory characteristics of cocoa. The first part of this review describes different cocoa alkalization systems and how they can be tuned to induce specific changes in cocoa properties. The second part is a holistic analysis of the effects of the alkalization process on different cocoa features, performed by emphasizing the biochemistry behind all these transformations.European Regional Development Fund, Grant/Award Number: Project RTC-2016-5241-2; Ministerio deEconomia y Competitividad, Grant/Award Number: Project RTC-2016-5241-2Valverde-Garcia, D.; Pérez-Esteve, É.; Barat Baviera, JM. (2020). Changes in cocoa properties induced by the alkalization process: A review. Comprehensive Reviews in Food Science and Food Safety. 19(4):2200-2221. https://doi.org/10.1111/1541-4337.12581S22002221194Ilesanmi Adeyeye, E. (2016). Proximate, Mineral And Antinutrient Compositions Of Natural Cocoa Cake, Cocoa Liquor And Alkalized Cocoa Powders. Journal of Advanced Pharmaceutical Science And Technology, 1(3), 12-28. doi:10.14302/issn.2328-0182.japst-15-855Ajandouz, E. H., Tchiakpe, L. S., Ore, F. D., Benajiba, A., & Puigserver, A. (2001). Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems. Journal of Food Science, 66(7), 926-931. doi:10.1111/j.1365-2621.2001.tb08213.xAndres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-Raventós, R. M. (2008). Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. Journal of Agricultural and Food Chemistry, 56(9), 3111-3117. doi:10.1021/jf0728754Andruszkiewicz, P. J., D’Souza, R. N., Altun, I., Corno, M., & Kuhnert, N. (2019). Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Research International, 121, 217-228. doi:10.1016/j.foodres.2019.03.015Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2015). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73-91. doi:10.1111/1541-4337.12180Aremu, C. Y., Agiang, M. A., & Ayatse, J. O. I. (1995). Nutrient and antinutrient profiles of raw and fermented cocoa beans. Plant Foods for Human Nutrition, 48(3), 217-223. doi:10.1007/bf01088443Bandi J. P. Kubicek K. &Raboud P. B.(1984).Installation for solubilizing cocoa. US4438681A.Baigrie, B. D. (1994). Cocoa flavour. Understanding Natural Flavors, 268-282. doi:10.1007/978-1-4615-2143-3_17Bartella, L., Di Donna, L., Napoli, A., Siciliano, C., Sindona, G., & Mazzotti, F. (2019). A rapid method for the assay of methylxanthines alkaloids: Theobromine, theophylline and caffeine, in cocoa products and drugs by paper spray tandem mass spectrometry. Food Chemistry, 278, 261-266. doi:10.1016/j.foodchem.2018.11.072Bauermeister J.(1989).Process for making cacao powder by disagglomeration and cacao powder granulate by subsequent agglomeration. EP0310790A2.Beg, M. S., Ahmad, S., Jan, K., & Bashir, K. (2017). Status, supply chain and processing of cocoa - A review. Trends in Food Science & Technology, 66, 108-116. doi:10.1016/j.tifs.2017.06.007Biehl B.(1986).Cocoa fermentation and problem of acidity over‐fermentation and low cocoa flavour.Selangor Malaysia: Incorporated Society of Planters.Serra Bonvehí, J., & Ventura Coll, F. (2000). Evaluation of purine alkaloids and diketopiperazines contents in processed cocoa powder. European Food Research and Technology, 210(3), 189-195. doi:10.1007/pl00005510Borthwick, A. D., & Da Costa, N. C. (2015). 2,5-diketopiperazines in food and beverages: Taste and bioactivity. Critical Reviews in Food Science and Nutrition, 57(4), 718-742. doi:10.1080/10408398.2014.911142Chalin M. L.(1972).Method of dutching cocoa. US3868469A.Rainer Cremer, D. (2000). The reaction kinetics for the formation of Strecker aldehydes in low moisture model systems and in plant powders. Food Chemistry, 71(1), 37-43. doi:10.1016/s0308-8146(00)00122-9De Vuyst, L., & Weckx, S. (2016). The cocoa bean fermentation process: from ecosystem analysis to starter culture development. Journal of Applied Microbiology, 121(1), 5-17. doi:10.1111/jam.13045Del Rio, D., Costa, L. G., Lean, M. E. J., & Crozier, A. (2010). Polyphenols and health: What compounds are involved? Nutrition, Metabolism and Cardiovascular Diseases, 20(1), 1-6. doi:10.1016/j.numecd.2009.05.015Domínguez-Rodríguez, G., Marina, M. L., & Plaza, M. (2017). Strategies for the extraction and analysis of non-extractable polyphenols from plants. Journal of Chromatography A, 1514, 1-15. doi:10.1016/j.chroma.2017.07.066El Gharras, H. (2009). Polyphenols: food sources, properties and applications - a review. International Journal of Food Science & Technology, 44(12), 2512-2518. doi:10.1111/j.1365-2621.2009.02077.xEllis L. D.(1990).Process for making dark cocoa. US5114730A.Ellis L. D. (1992).Process for making dark cocoa. US5114730A.Lu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., … Charalampopoulos, D. (2018). Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14, 80-88. doi:10.1016/j.cogsc.2018.07.007Franco, R., Oñatibia-Astibia, A., & Martínez-Pinilla, E. (2013). Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 5(10), 4159-4173. doi:10.3390/nu5104159Germann, D., Stark, T. D., & Hofmann, T. (2019). Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 1. Journal of Agricultural and Food Chemistry, 67(16), 4632-4642. doi:10.1021/acs.jafc.9b01049Germann, D., Stark, T. D., & Hofmann, T. (2019). Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 2. Journal of Agricultural and Food Chemistry, 67(16), 4643-4651. doi:10.1021/acs.jafc.9b01050Gobert, J., & Glomb, M. A. (2009). Degradation of Glucose: Reinvestigation of Reactive α-Dicarbonyl Compounds†. Journal of Agricultural and Food Chemistry, 57(18), 8591-8597. doi:10.1021/jf9019085Gu, L., House, S. E., Wu, X., Ou, B., & Prior, R. L. (2006). Procyanidin and Catechin Contents and Antioxidant Capacity of Cocoa and Chocolate Products. Journal of Agricultural and Food Chemistry, 54(11), 4057-4061. doi:10.1021/jf060360rGültekin-Özgüven, M., Berktaş, I., & Özçelik, B. (2016). Change in stability of procyanidins, antioxidant capacity and in-vitro bioaccessibility during processing of cocoa powder from cocoa beans. LWT - Food Science and Technology, 72, 559-565. doi:10.1016/j.lwt.2016.04.065Hagerman, A. E. (1992). Tannin—Protein Interactions. Phenolic Compounds in Food and Their Effects on Health I, 236-247. doi:10.1021/bk-1992-0506.ch019Holkar, C. R., Jadhav, A. J., & Pinjari, D. V. (2019). A critical review on the possible remediation of sediment in cocoa/coffee flavored milk. Trends in Food Science & Technology, 86, 199-208. doi:10.1016/j.tifs.2019.02.035Huang, Y., & Barringer, S. A. (2010). Alkylpyrazines and Other Volatiles in Cocoa Liquors at pH 5 to 8, by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). Journal of Food Science, 75(1), C121-C127. doi:10.1111/j.1750-3841.2009.01455.xHurst, W. J., Krake, S. H., Bergmeier, S. C., Payne, M. J., Miller, K. B., & Stuart, D. A. (2011). Impact of fermentation, drying, roasting and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredients. Chemistry Central Journal, 5(1). doi:10.1186/1752-153x-5-53International Cocoa Organization(2017).Annual report 2014/2015 Retrieved fromhttps://www.icco.org/about-us/international-cocoa-agreements/cat_view/1-annual-report.html.Mazor Jolić, S., Radojčić Redovniković, I., Marković, K., Ivanec Šipušić, Đ., & Delonga, K. (2011). Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. International Journal of Food Science & Technology, 46(9), 1793-1800. doi:10.1111/j.1365-2621.2011.02670.xKofink, M., Papagiannopoulos, M., & Galensa, R. (2007). (-)-Catechin in Cocoa and Chocolate: Occurence and Analysis of an Atypical Flavan-3-ol Enantiomer. Molecules, 12(7), 1274-1288. doi:10.3390/12071274Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012Kopp G. M. Hennen J. C. Seyller M. &Brandstetter B.(2010).Process for producing high flavour cocoa. EP2241190A1.Kruszewski, B., & Obiedziński, M. W. (2020). Impact of Raw Materials and Production Processes on Furan and Acrylamide Contents in Dark Chocolate. Journal of Agricultural and Food Chemistry, 68(8), 2562-2569. doi:10.1021/acs.jafc.0c00412Lan, X., Liu, P., Xia, S., Jia, C., Mukunzi, D., Zhang, X., … Xiao, Z. (2010). Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylose–soybean peptide system: Further insights into thermal degradation and cross-linking. Food Chemistry, 120(4), 967-972. doi:10.1016/j.foodchem.2009.11.033Li, Y., Feng, Y., Zhu, S., Luo, C., Ma, J., & Zhong, F. (2012). The effect of alkalization on the bioactive and flavor related components in commercial cocoa powder. Journal of Food Composition and Analysis, 25(1), 17-23. doi:10.1016/j.jfca.2011.04.010Li, Y., Zhu, S., Feng, Y., Xu, F., Ma, J., & Zhong, F. (2013). Influence of alkalization treatment on the color quality and the total phenolic and anthocyanin contents in cocoa powder. Food Science and Biotechnology, 23(1), 59-63. doi:10.1007/s10068-014-0008-5Lima, L. J. R., Kamphuis, H. J., Nout, M. J. R., & Zwietering, M. H. (2011). Microbiota of cocoa powder with particular reference to aerobic thermoresistant spore-formers. Food Microbiology, 28(3), 573-582. doi:10.1016/j.fm.2010.11.011MALEYKI, M. J. A., & ISMAIL, A. (2010). ANTIOXIDANT PROPERTIES OF COCOA POWDER. Journal of Food Biochemistry, 34(1), 111-128. doi:10.1111/j.1745-4514.2009.00268.xMartín, M. Á., & Ramos, S. (2017). Health beneficial effects of cocoa phenolic compounds: a mini-review. Current Opinion in Food Science, 14, 20-25. doi:10.1016/j.cofs.2016.12.002Martin, M. A., Goya, L., & Ramos, S. (2013). Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food and Chemical Toxicology, 56, 336-351. doi:10.1016/j.fct.2013.02.020Méndez-Albores, A., De Jesús-Flores, F., Castañeda-Roldan, E., Arámbula-Villa, G., & Moreno-Martı́nez, E. (2004). The effect of toasting and boiling on the fate of B-aflatoxins during pinole preparation. Journal of Food Engineering, 65(4), 585-589. doi:10.1016/j.jfoodeng.2004.02.024Miller, K. B., Hurst, W. J., Payne, M. J., Stuart, D. A., Apgar, J., Sweigart, D. S., & Ou, B. (2008). Impact of Alkalization on the Antioxidant and Flavanol Content of Commercial Cocoa Powders. Journal of Agricultural and Food Chemistry, 56(18), 8527-8533. doi:10.1021/jf801670pOlam. (2017).The De Zaan cocoa manual. The Netherlands: Archer Daniels Midland Company BV.ODUNS, A. A., & LONGE, O. G. (1998). Nutritive value of hot water- or cocoa-pod ash solution-treated cocoa bean cake for broiler chicks. British Poultry Science, 39(4), 519-525. doi:10.1080/00071669888700Ofosu, I. W., Ankar-Brewoo, G. M., Lutterodt, H. E., Benefo, E. O., & Menyah, C. A. (2019). Estimated daily intake and risk of prevailing acrylamide content of alkalized roasted cocoa beans. Scientific African, 6, e00176. doi:10.1016/j.sciaf.2019.e00176Okiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103-112. doi:10.1016/j.tifs.2017.03.007Ortega, N., Romero, M.-P., Macià, A., Reguant, J., Anglès, N., Morelló, J.-R., & Motilva, M.-J. (2008). Obtention and Characterization of Phenolic Extracts from Different Cocoa Sources. Journal of Agricultural and Food Chemistry, 56(20), 9621-9627. doi:10.1021/jf8014415Pia, A. K. R., Pereira, A. P. M., Costa, R. A., Alvarenga, V. O., Freire, L., Carlin, F., & Sant’Ana, A. S. (2019). The fate of Bacillus cereus and Geobacillus stearothermophilus during alkalization of cocoa as affected by alkali concentration and use of pre-roasted nibs. Food Microbiology, 82, 99-106. doi:10.1016/j.fm.2019.01.009Quelal-Vásconez, M. A., Lerma-García, M. J., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2020). Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. LWT, 117, 108598. doi:10.1016/j.lwt.2019.108598Quelal‐Vásconez, M. A., Lerma‐García, M. J., Pérez‐Esteve, É., Talens, P., & Barat, J. M. (2020). Roadmap of cocoa quality and authenticity control in the industry: A review of conventional and alternative methods. Comprehensive Reviews in Food Science and Food Safety, 19(2), 448-478. doi:10.1111/1541-4337.12522Razzaque, M. A., Saud, Z. A., Absar, N., Karim, M. R., & Hashinaga, F. (2000). Purification and Characterization of Polyphenoloxidase from Guava Infected with Fruit-rot Disease. Pakistan Journal of Biological Sciences, 3(3), 407-410. doi:10.3923/pjbs.2000.407.410Rimbach, G., Melchin, M., Moehring, J., & Wagner, A. (2009). Polyphenols from Cocoa and Vascular Health—A Critical Review. International Journal of Molecular Sciences, 10(10), 4290-4309. doi:10.3390/ijms10104290Rodríguez, P., Pérez, E., & Guzmán, R. (2009). Effect of the types and concentrations of alkali on the color of cocoa liquor. Journal of the Science of Food and Agriculture, 89(7), 1186-1194. doi:10.1002/jsfa.3573Saltini, R., Akkerman, R., & Frosch, S. (2013). Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality. Food Control, 29(1), 167-187. doi:10.1016/j.foodcont.2012.05.054Sarmadi, B., Aminuddin, F., Hamid, M., Saari, N., Abdul-Hamid, A., & Ismail, A. (2012). Hypoglycemic effects of cocoa (Theobroma cacao L.) autolysates. Food Chemistry, 134(2), 905-911. doi:10.1016/j.foodchem.2012.02.202Sarmadi, B., Ismail, A., & Hamid, M. (2011). Antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of cocoa (Theobroma cacao L.) autolysates. Food Research International, 44(1), 290-296. doi:10.1016/j.foodres.2010.10.017Scalone, G. L. L., Textoris-Taube, K., De Meulenaer, B., De Kimpe, N., Wöstemeyer, J., & Voigt, J. (2019). Cocoa-specific flavor components and their peptide precursors. Food Research International, 123, 503-515. doi:10.1016/j.foodres.2019.05.019Schroder, T., Vanhanen, L., & Savage, G. P. (2011). Oxalate content in commercially produced cocoa and dark chocolate. Journal of Food Composition and Analysis, 24(7), 916-922. doi:10.1016/j.jfca.2011.03.008Shankar, M. U., Levitan, C. A., Prescott, J., & Spence, C. (2009). The Influence of Color and Label Information on Flavor Perception. Chemosensory Perception, 2(2), 53-58. doi:10.1007/s12078-009-9046-4Singh, P., Kesharwani, R. K., & Keservani, R. K. (2017). Antioxidants and Vitamins. Sustained Energy for Enhanced Human Functions and Activity, 385-407. doi:10.1016/b978-0-12-805413-0.00024-7Tanaka M. &Terauchi M.(1999).Cocoa powder rich in polyphenols process for producing the same and modified cocoa containing the same. US6485772B1.Taş, N. G., & Gökmen, V. (2016). Effect of alkalization on the Maillard reaction products formed in cocoa during roasting. Food Research International, 89, 930-936. doi:10.1016/j.foodres.2015.12.021Terink J. &Brandon M. J.(1981).Alkalized cocoa powders and foodstuffs containing such powders. US4435436A.Todorovic, V., Milenkovic, M., Vidovic, B., Todorovic, Z., & Sobajic, S. (2017). Correlation between Antimicrobial, Antioxidant Activity, and Polyphenols of Alkalized/Nonalkalized Cocoa Powders. Journal of Food Science, 82(4), 1020-1027. doi:10.1111/1750-3841.13672Tomas-Barberán, F. A., Cienfuegos-Jovellanos, E., Marín, A., Muguerza, B., Gil-Izquierdo, A., Cerdá, B., … Espín, J. C. (2007). A New Process To Develop a Cocoa Powder with Higher Flavonoid Monomer Content and Enhanced Bioavailability in Healthy Humans. Journal of Agricultural and Food Chemistry, 55(10), 3926-3935. doi:10.1021/jf070121jTotlani, V. M., & Peterson, D. G. (2005). Reactivity of Epicatechin in Aqueous Glycine and Glucose Maillard Reaction Models:  Quenching of C2, C3, and C4 Sugar Fragments. Journal of Agricultural and Food Chemistry, 53(10), 4130-4135. doi:10.1021/jf050044xTotlani, V. M., & Peterson, D. G. (2006). Influence of Epicatechin Reactions on the Mechanisms of Maillard Product Formation in Low Moisture Model Systems. Journal of Agricultural and Food Chemistry, 55(2), 414-420. doi:10.1021/jf0617521Trout R. B.(2001).Method for making dutched cocoa. EP1278428B1.Turcotte, A.-M., Scott, P. M., & Tague, B. (2013). Analysis of cocoa products for ochratoxin A and aflatoxins. Mycotoxin Research, 29(3), 193-201. doi:10.1007/s12550-013-0167-xWang, R., Wang, T., Zheng, Q., Hu, X., Zhang, Y., & Liao, X. (2012). Effects of high hydrostatic pressure on color of spinach purée and related properties. Journal of the Science of Food and Agriculture, 92(7), 1417-1423. doi:10.1002/jsfa.4719Wiant M. J. William R. Lynch W. R. &LeFreniere R. C.(1989).Method for producing deep red and black cocoa. US5009917A.Wissgott U.(1988).Process of alkalization of cocoa in aqueous phase. US4784866A.Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423-447. doi:10.1016/s0963-9969(00)00068-5Zhang, L., Xia, Y., & Peterson, D. G. (2014). Identification of Bitter Modulating Maillard-Catechin Reaction Products. Journal of Agricultural and Food Chemistry, 62(33), 8470-8477. doi:10.1021/jf502040eZhu, Q. Y., Holt, R. R., Lazarus, S. A., Ensunsa, J. L., Hammerstone, J. F., Schmitz, H. H., & Keen, C. L. (2002). Stability of the Flavan-3-ols Epicatechin and Catechin and Related Dimeric Procyanidins Derived from Cocoa. Journal of Agricultural and Food Chemistry, 50(6), 1700-1705. doi:10.1021/jf011228

    Preliminary characterization of a Moroccan honey with a predominance of Bupleurum spinosum pollen

    Get PDF
    Honey with Bupleurum spinosum (zandaz) as a main pollen source has not been the subject of previous detailed study. Therefore, twelve Moroccan samples of this honey were subjected to melissopalynological, physicochemical and microbiological quality characterization, as well as antioxidant activity assessment. From a quality point of view, almost all samples were within the limits established by Codex Alimentarius, and/or the European legislation. All samples presented predominance of B. spinosum pollen (more than 48%). Relatively high levels of trehalose (1.3-4.0 g/100 g) and melezitose (1.5-2.8 g/100 g) were detected. Those sugars, not common in monofloral honeys, could be used as an important factor to discriminate zandaz honey. Flavonoid content correlated positively with the honey color, melanoidin and polyphenol content, and negatively with the IC50 values of scavenging ABTS (2,2' - azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) free radicals, while proline amount correlated negatively with IC50 values of nitric oxide scavenging activity and chelating power. This correlation supports the use of anti-oxidant activities as important variables for PCA (principal component analysis). Both components explained 70% from the given data, and showed certain homogeneity upon analyzed samples independent of the region, suggesting the importance of B. spinosum nectar in the resulting honey characteristics.Fundacao para a Ciencia e Tecnologia for Research Center [UID/BIM/04773/2013 CBMR 1334, UID/AGR/00239/2013, UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569)]; ERDF through the COMPETE - Programa Operacional Competitividade e Internacionalizacao (POCI

    The Variations in Religious and Legal Understandings on Halal Slaughter

    Get PDF
    Purpose: This paper attempts to provide an overview of different understandings regarding the concept of "what constitutes halal" and "who determines this concept?" In practice, this equates to contemporary legal understandings versus religious understandings. The paper further aims to provide an overview of competing Muslim understandings regarding the concept of "What does or does not constitute halal slaughter?" In practice, this equates to evaluating the application of no stunning at all upon an animal (unanimous acceptance) versus the application of reversible stunning upon an animal (contested). Design: The study includes a review of priori literature and considers the current scenario of the halal poultry trade and raises important questions regarding Islamic dietary practices, halal food integrity, religious and animal welfare understandings. Three key questions were raised: "To what extent does stunning impact halal slaughter?’, ‘Who determines what is halal slaughter?’ and ‘What are the variations and tensions between legal and religious understandings of halal slaughter?’ Findings: The examination of such requirements and concomitant consumer and provider expectations is underpinned by a study of an operational framework, i.e. industry practices with poultry (hand slaughter, stunning, mechanical slaughter, etc.), ethical values and market forces to appraise whether there is a point of convergence for these that can be beneficial for both seller and consumer concerns. This paper has considered different perspectives on the religious slaughter and provided an overview of competing understandings regarding the above concepts. Originality/value – This study although academic and philosophical in nature, raises questions on route to suggesting future research directions. It provides real value in stimulating more research in the area of halal food production and contributes to the understanding of different slaughter requirements for religious slaughter and the meat industry. It further sheds light on not only the religious and secular legal frameworks on animal slaughter and welfare but also the variations in understanding between them and provides examples of attempts to bridge any gap. The paper highlights the importance of halal food based on religious values and its implications for wider society

    Expert opinion as 'validation' of risk assessment applied to calf welfare

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, a Risk Assessment methodology was applied to animal welfare issues in a report of the European Food Safety Authority (EFSA) on intensively housed calves.</p> <p>Methods</p> <p>Because this is a new and potentially influential approach to derive conclusions on animal welfare issues, a so-called semantic-modelling type 'validation' study was conducted by asking expert scientists, who had been involved or quoted in the report, to give welfare scores for housing systems and for welfare hazards.</p> <p>Results</p> <p>Kendall's coefficient of concordance among experts (n = 24) was highly significant (P < 0.001), but low (0.29 and 0.18 for housing systems and hazards respectively). Overall correlations with EFSA scores were significant only for experts with a veterinary or mixed (veterinary and applied ethological) background. Significant differences in welfare scores were found between housing systems, between hazards, and between experts with different backgrounds. For example, veterinarians gave higher overall welfare scores for housing systems than ethologists did, probably reflecting a difference in their perception of animal welfare.</p> <p>Systems with the lowest scores were veal calves kept individually in so-called "baby boxes" (veal crates) or in small groups, and feedlots. A suckler herd on pasture was rated as the best for calf welfare. The main hazards were related to underfeeding, inadequate colostrum intake, poor stockperson education, insufficient space, inadequate roughage, iron deficiency, inadequate ventilation, poor floor conditions and no bedding. Points for improvement of the Risk Assessment applied to animal welfare include linking information, reporting uncertainty and transparency about underlying values.</p> <p>Conclusion</p> <p>The study provides novel information on expert opinion in relation to calf welfare and shows that Risk Assessment applied to animal welfare can benefit from a semantic modelling approach.</p

    The emergence of international food safety standards and guidelines: understanding the current landscape through a historical approach

    Get PDF
    Following the Second World War, the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) teamed up to construct an International Codex Alimentarius (or 'food code') which emerged in 1963. The Codex Committee on Food Hygiene (CCFH) was charged with the task of developing microbial hygiene standards, although it found itself embroiled in debate with the WHO over the nature these standards should take. The WHO was increasingly relying upon the input of biometricians and especially the International Commission on Microbial Specifications for Foods (ICMSF) which had developed statistical sampling plans for determining the microbial counts in the final end products. The CCFH, however, was initially more focused on a qualitative approach which looked at the entire food production system and developed codes of practice as well as more descriptive end-product specifications which the WHO argued were 'not scientifically correct'. Drawing upon historical archival material (correspondence and reports) from the WHO and FAO, this article examines this debate over microbial hygiene standards and suggests that there are many lessons from history which could shed light upon current debates and efforts in international food safety management systems and approaches

    Analysis of 61 exclusive enteral nutrition formulas used in management of active Crohn's disease - new insights into dietary disease triggers

    Get PDF
    Background: Exclusive enteral nutrition (EEN) is an effective treatment for Crohn's disease. Aims: To investigate the hypothesis that ingredients of EEN formulas are unlikely to initiate a disease flare and that their dietary elimination is not essential for disease amelioration. Methods: We performed compositional analysis of EEN formulas with evidence of efficacy in management of active Crohn's disease. Macronutrient content was compared against the dietary reference values (DRV), the UK National Diet and Nutrition Survey (NDNS) and intake of Crohn's disease children. Food additives were cross‐referenced against the FAO/WHO database. Results: Sixty‐one formulas were identified with variable composition (carbohydrates [22.8%‐89.3%], protein [7.8%‐30.1%], fat [0%‐52.5%]). Maltodextrin, milk protein and vegetable/plant oils were the commonest macronutrient sources. Their n‐6:n‐3 fatty acid ratio varied from 0.25 to 46.5. 56 food additives were identified (median per formula: 11). All formulas were lactose‐free, gluten‐free, and 82% lacked fibre. The commonest food additives were emulsifiers, stabilisers, antioxidants, acidity regulators and thickeners. Food additives, implicated in Crohn's disease aetiology, were present in formulas (modified starches [100%], carrageenan [22%], carboxymethyl cellulose [13%] and polysorbate 80 [5%]). Remission rates did not differ between EEN formulas with and without those food additives. Analysis including only formulas from randomised controlled trials (RCTs) retained in the latest Cochrane meta‐analysis produced similar findings. EEN formulas contained less energy from saturated fat than NDNS intake. Conclusion: We have identified food ingredients which are present in EEN formulas that are effective in Crohn's disease and challenge perceptions that these ingredients might be harmful
    corecore