469 research outputs found

    KAUFMANN PURCELL, Susan & Françoise SIMON(dir.). Europe and Latin America in the World Economy. Boulder, Lynne Rienner Publishers, 1995, 215 p.

    Get PDF
    INTRODUCTION: Extracellular vesicles (EVs) are shed from cells and carry markers of the parent cells. Vesicles derived from cancer cells reach the bloodstream and locally influence important physiological processes. It has been previously shown that procoagulant vesicles are circulating in patients’ fluids. These EVs are therefore considered as promising biomarkers for the thrombotic risk. Because of their small size, classical methods such as flow cytometry suffer from limitation for their characterisation. Atomic force microscopy (AFM) has been proposed as a promising complementary method for the characterisation of EVs. OBJECTIVES: The objectives of this study are: (a) to develop and validate AFM with specific antibodies (anti-TF) and (b) to compare air and liquid modes for EVs’ size and number determination as potential biomarkers of the prothrombotic risk. METHODS: AFM multimode nanoscope III was used for air tapping mode (TM). AFM catalyst was used for liquid Peak Force Tapping (PFT) mode. Vesicles are generated according to Davila et al.'s protocol. Substrates are coated with various concentrations of antibodies, thanks to ethanolamine and glutaraldehyde. RESULTS: Vesicles were immobilised on antibody-coated surfaces to select tissue factor (TF)-positive vesicles. The size range of vesicles observed in liquid PFT mode is 6–10 times higher than in air mode. This corresponds to the data found in the literature. CONCLUSION: We recommend liquid PFT mode to analyse vesicles on 5 µg/ml antibody-coated substrates

    Interaction of PLP with GFP-MAL2 in the Human Oligodendroglial Cell Line HOG

    Get PDF
    The velocity of the nerve impulse conduction of vertebrates relies on the myelin sheath, an electrically insulating layer that surrounds axons in both the central and peripheral nervous systems, enabling saltatory conduction of the action potential. Oligodendrocytes are the myelin-producing glial cells in the central nervous system. A deeper understanding of the molecular basis of myelination and, specifically, of the transport of myelin proteins, will contribute to the search of the aetiology of many dysmyelinating and demyelinating diseases, including multiple sclerosis. Recent investigations suggest that proteolipid protein (PLP), the major myelin protein, could reach myelin sheath by an indirect transport pathway, that is, a transcytotic route via the plasma membrane of the cell body. If PLP transport relies on a transcytotic process, it is reasonable to consider that this myelin protein could be associated with MAL2, a raft protein essential for transcytosis. In this study, carried out with the human oligodendrocytic cell line HOG, we show that PLP colocalized with green fluorescent protein (GFP)-MAL2 after internalization from the plasma membrane. In addition, both immunoprecipitation and immunofluorescence assays, indicated the existence of an interaction between GFP-MAL2 and PLP. Finally, ultrastructural studies demonstrated colocalization of GFP-MAL2 and PLP in vesicles and tubulovesicular structures. Taken together, these results prove for the first time the interaction of PLP and MAL2 in oligodendrocytic cells, supporting the transcytotic model of PLP transport previously suggested

    Interaction and uptake of exosomes by ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells.</p> <p>Methods</p> <p>SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts.</p> <p>Results</p> <p>In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose.</p> <p>Conclusions</p> <p>In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to the knowledge about the properties and dynamics of exosomes in cancer.</p

    Exosome-Related Multi-Pass Transmembrane Protein TSAP6 Is a Target of Rhomboid Protease RHBDD1-Induced Proteolysis

    Get PDF
    We have previously reported that rhomboid domain containing 1 (RHBDD1), a mammalian rhomboid protease highly expressed in the testis, can cleave the Bcl-2 protein Bik. In this study, we identified a multi-pass transmembrane protein, tumor suppressor activated pathway-6 (TSAP6) as a potential substrate of RHBDD1. RHBDD1 was found to induce the proteolysis of TSAP6 in a dose- and activity-dependent manner. The cleavage of TSAP6 was not restricted to its glycosylated form and occurred in three different regions. In addition, mass spectrometry and mutagenesis analyses both indicated that the major cleavage site laid in the C-terminal of the third transmembrane domain of TSAP6. A somatic cell knock-in approach was used to genetically inactivate the endogenous RHBDD1 in HCT116 and RKO colon cancer cells. Exosome secretion was significantly elevated when RHBDD1 was inactivated in the two cells lines. The increased exosome secretion was verfied through the detection of certain exosomal components, including Tsg101, Tf-R, FasL and Trail. In addition, the elevation of exosome secretion by RHBDD1 inactivation was reduced when TSAP6 was knocked down, indicating that the role of RHBDD1 in regulating exosomal trafficking is very likely to be TSAP6-dependent. We found that the increase in FasL and Trail increased exosome-induced apoptosis in Jurkat cells. Taken together, our findings suggest that RHBDD1 is involved in the regulation of a nonclassical exosomal secretion pathway through the restriction of TSAP6

    Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop

    Get PDF
    Paracrine and endocrine roles have increasingly been ascribed to extracellular vesicles (EVs) generated by multicellular organisms. Central to the biogenesis, content, and function of EVs are their delimiting lipid bilayer membranes. To evaluate research progress on membranes and EVs, the International Society for Extracellular Vesicles (ISEV) conducted a workshop in March 2018 in Baltimore, Maryland, USA, bringing together key opinion leaders and hands-on researchers who were selected on the basis of submitted applications. The workshop was accompanied by two scientific surveys and covered four broad topics: EV biogenesis and release; EV uptake and fusion; technologies and strategies used to study EV membranes; and EV transfer and functional assays. In this ISEV position paper, we synthesize the results of the workshop and the related surveys to outline important outstanding questions about EV membranes and describe areas of consensus. The workshop discussions and survey responses reveal that while much progress has been made in the field, there are still several concepts that divide opinion. Good consensus exists in some areas, including particular aspects of EV biogenesis, uptake and downstream signalling. Areas with little to no consensus include EV storage and stability, as well as whether and how EVs fuse with target cells. Further research is needed in these key areas, as a better understanding of membrane biology will contribute substantially towards advancing the field of extracellular vesicles.Fil: Russell, Ashley E.. University Johns Hopkins; Estados UnidosFil: Sneider, Alexandra. University Johns Hopkins; Estados UnidosFil: Witwer, Kenneth W.. University Johns Hopkins; Estados UnidosFil: Bergese, Paolo. Università Degli Studi Di Brescia; ItaliaFil: Bhattacharyya, Suvendra N.. Indian Institute of Chemical Biology; IndiaFil: Cocks, Alexander. Cardiff University; Reino UnidoFil: Cocucci, Emanuele. Ohio State University; Estados UnidosFil: Erdbrügger, Uta. University of Virginia; Estados UnidosFil: Falcon Perez, Juan M.. Ikerbasque Basque Foundation for Science; EspañaFil: Freeman, David W.. National Institute On Aging National Institute for Helth ; Estados UnidosFil: Gallagher, Thomas M.. Loyola University Of Chicago; Estados UnidosFil: Hu, Shuaishuai. Technological University Dublin; IrlandaFil: Huang, Yiyao. University Johns Hopkins; Estados Unidos. Southern Medical University; ChinaFil: Jay, Steven M.. University of Maryland; Estados UnidosFil: Kano, Shin-ichi. The University of Alabama at Birmingham School of Medicine; Estados UnidosFil: Lavieu, Gregory. Institut Curie; FranciaFil: Leszczynska, Aleksandra. University of California at San Diego; Estados UnidosFil: Llorente, Alicia M.. Oslo University Hospital; NoruegaFil: Lu, Quan. Harvard University. Harvard School of Public Health; Estados UnidosFil: Mahairaki, Vasiliki. University Johns Hopkins; Estados UnidosFil: Muth, Dillon C.. University Johns Hopkins; Estados UnidosFil: Noren Hooten, Nicole. National Institute On Aging National Institute for Helth ; Estados UnidosFil: Ostrowski, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Prada, Ilaria. Consiglio Nazionale delle Ricerche; ItaliaFil: Sahoo, Susmita. Icahn School of Medicine at Mount Sinai ; Estados UnidosFil: Schøyen, Tine Hiorth. Uit The Arctic University Of Norway; Noruega. University Johns Hopkins; Estados UnidosFil: Sheng, Lifuy. University of Washington. School of Medicine; Estados UnidosFil: Tesch, Deanna. Shaw University; Estados UnidosFil: Van Niel, Guillaume. No especifíca;Fil: Vandenbroucke, Roosmarijn E.. University of Ghent; BélgicaFil: Verweij, Frederik J.. No especifíca;Fil: Villar, Ana V.. Universidad de Cantabria; EspañaFil: Wauben, Marca. University of Utrecht; Países BajosFil: Wehman, Ann M.. Universität Würzburg; AlemaniaFil: Ardavan, Arzhang. Peking University; ; ChinaFil: Carter, David Raul Francisco. Oxford Brookes University; Reino UnidoFil: Vader, Pieter. University Medical Center Utrecht; Países Bajo

    RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients.</p> <p>Methods</p> <p>Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9) and normal controls (N = 7) were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups).</p> <p>Results</p> <p>Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down) in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size < 500 nt. Gene ontology of the down-regulated genes indicated these are coding for ribosomal proteins and genes related to ribosome production.</p> <p>Conclusions</p> <p>Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down-regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size < 500 nt.</p

    Proteomic Analysis of the Dysferlin Protein Complex Unveils Its Importance for Sarcolemmal Maintenance and Integrity

    Get PDF
    Dysferlin is critical for repair of muscle membranes after damage. Mutations in dysferlin lead to a progressive muscular dystrophy. Recent studies suggest additional roles for dysferlin. We set out to study dysferlin's protein-protein interactions to obtain comprehensive knowledge of dysferlin functionalities in a myogenic context. We developed a robust and reproducible method to isolate dysferlin protein complexes from cells and tissue. We analyzed the composition of these complexes in cultured myoblasts, myotubes and skeletal muscle tissue by mass spectrometry and subsequently inferred potential protein functions through bioinformatics analyses. Our data confirm previously reported interactions and support a function for dysferlin as a vesicle trafficking protein. In addition novel potential functionalities were uncovered, including phagocytosis and focal adhesion. Our data reveal that the dysferlin protein complex has a dynamic composition as a function of myogenic differentiation. We provide additional experimental evidence and show dysferlin localization to, and interaction with the focal adhesion protein vinculin at the sarcolemma. Finally, our studies reveal evidence for cross-talk between dysferlin and its protein family member myoferlin. Together our analyses show that dysferlin is not only a membrane repair protein but also important for muscle membrane maintenance and integrity

    Forty years on: clathrin-coated pits continue to fascinate

    Get PDF
    Clathrin mediated endocytosis (CME) is a fundamental process in cell biology and has been extensively investigated throughout the last several decades. Every cell biologist learns about it at some point during their education and the beauty of this process has led many of us to go deeper and make it the topic of our own research. Great progress has been made towards elucidating the mechanisms of CME and the field is becoming increasingly complex with several hundred new publications every year. This makes it easy to get lost in the vast amount of literature and to forget about the fundamentals of the field, based on the careful interpretation of simple observations made over 40 years ago. A study performed by Anderson, Brown and Goldstein in 1977 (Anderson et al., 1977) is a prime example of this. We therefore want to take a step back and examine how this seminal study was pivotal to our understanding of CME and its progression into ever increasing complexity over the last four decades

    Contribution by Polymorphonucleate Granulocytes to Elevated Gamma-Glutamyltransferase in Cystic Fibrosis Sputum

    Get PDF
    Background: Cystic fibrosis (CF) is an autosomal recessive disorder characterized by a chronic neutrophilic airways inflammation, increasing levels of oxidative stress and reduced levels of antioxidants such as glutathione (GSH). Gammaglutamyltransferase (GGT), an enzyme induced by oxidative stress and involved in the catabolism of GSH and its derivatives, is increased in the airways of CF patients with inflammation, but the possible implications of its increase have not yet been investigated in detail. Principal Findings: The present study was aimed to evaluate the origin and the biochemical characteristics of the GGT detectable in CF sputum. We found GGT activity both in neutrophils and in the fluid, the latter significantly correlating with myeloperoxidase expression. In neutrophils, GGT was associated with intracellular granules. In the fluid, gel-filtration chromatography showed the presence of two distinct GGT fractions, the first corresponding to the human plasma b-GGT fraction, the other to the free enzyme. The same fractions were also observed in the supernatant of ionomycin and fMLPactivated neutrophils. Western blot analysis confirmed the presence of a single band of GGT immunoreactive peptide in the CF sputum samples and in isolated neutrophils. Conclusions: In conclusion, our data indicate that neutrophils are able to transport and release GGT, thus increasing GGT activity in CF sputum. The prompt release of GGT may have consequences on all GGT substrates, including major inflammatory mediators such as S-nitrosoglutathione and leukotrienes, and could participate in early modulation of inflammatory response
    • …
    corecore