185 research outputs found
Contrasting Inequalities: Comparing Correlates of Health in Canada and the United States
Comparative health studies consistently find that Canadians on average are healthier than Americans. Comparing health status within and between Canada and the United States provides key insights into the distribution of inequalities in these two countries. Canada’s universal health care insurance system contrasts with the mixed system of the United States: universal care for seniors, private health care insurance for many, and no or intermittent coverage for others. These countries are also notably different in the extent of income and racial/ethnic inequalities. It is within this context that this study compares the relative strength of the relationships between social, economic, and demographic factors (sex, age, marital status, income, education, country of birth, and race/ethnicity) and health status in Canada and the United States. Evidence drawn from the 2002-2003 Joint Canada/United States Survey of Health reveals that the correlations between these factors, above all country of birth and race/ethnicity, and health are relatively stronger in the United States, reflecting differences in health care access and racial/ethnic-based inequalities between the countries. The study findings are suggestive of the effects of universal access to health care and more equitable distribution of other social resources in protecting the health of the general population.self-reported health, United States, Canada, health insurance, income, race, ethnicity, age, sex
Long-distance dispersal of the coconut palm by migration within the coral atoll ecosystem
Background The location of the original home of the coconut palm, Cocos nucifera, and the extent of its natural dispersal are not known. Proponents of a South American origin must explain why it is not indigenous there and why it shows greatest diversity in southern Asia. Conversely, proponents of an Asian origin must explain why there are no Asian Cocoseae and why the closest botanical relative to Cocos is in South America. Both hypotheses share the common problems of how, when, where and in what directions long-distance dispersal occurred. Hypothesis These difficulties are resolved by accepting that C. nucifera originated and dispersed by populating emerging islands of the coral atoll ecosystem, where establishment conditions impose high selection pressures for survival. When lifted by wave action onto virtually sterile, soilless coralline rocks just above sea level and exposed to the full impact of the sun, seednuts must germinate, root and establish vigorous populations. The cavity within the nut augments the buoyancy provided by the thick husk, which in turn protects the embryo and, by delaying germination, simultaneously extends viability while floating and provides a moisture-retentive rooting medium for the young seedling. These adaptations allow coconuts to disperse widely through the coral atoll ecosystem. Conclusions The monthly production of fruit and the long floating duration ensure that viable seednuts are always available in the lagoon to replace those destroyed by hurricanes and tsunamis, or to populate newly emerged coral atolls elsewhere. Long-distance dispersal is secondary, because it was the spontaneous, independent migration of coral polyps on a prolonged geological time scale that generated new coral atolls in new areas where the coconuts would be amongst the earliest inhabitants. The coconut palm became an intermittent, itinerant, pioneer endemic there, and also on suitable beaches on volcanic or large islands and continental coastlines. © 2013 The Author. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved
Probing Bottom-up Processing with Multistable Images
The selection of fixation targets involves a combination of top-down and bottom-up processing. The role of bottom-up processing can be enhanced by using multistable stimuli because their constantly changing appearance seems to depend predominantly on stimulusdriven factors. We used this approach to investigate whether visual processing models based on V1 need to be extended to incorporate specific computations attributed to V4. Eye movements of 8 subjects were recorded during free viewing of the Marroquin pattern in which illusory circles appear and disappear. Fixations were concentrated on features arranged in concentric rings within the pattern. Comparison with simulated fixation data demonstrated that the saliency of these features can be predicted with appropriate weighting of lateral connections in existing V1 models
Negotiating the Web Science Curriculum through Shared Educational Artefacts
EXTENDED ABSTRACT The far-reaching impact of Web on society is widely recognised and acknowledged. The interdisciplinary study of this impact has crystallised in the field of study known as Web Science. However, defining an agreed, shared understanding of what constitutes Web Science requires complex negotiation and translations of understandings across component disciplines, national cultures and educational traditions. Some individual institutions have already established particular curricula, and discussions in the Web Science Curriculum Workshop series have marked the territory to some extent. This paper reports on a process being adopted across a consortium of partners to systematically create a shared understanding of what constitutes Web Science. It records and critiques the processes instantiated to agree a common curriculum, and presents a framework for future discussion and development. The need to study the Web in its complexity, development and impact led to the creation of Web Science. Web Science is inherently interdisciplinary. Its goal is to: a) understand the Web growth mechanisms; b) create approaches that allow new powerful and more beneficial mechanisms to occur. Teaching Web Science is a unique experience since the emerging discipline is a combination of two essential features. On one hand, the analysis of microscopic laws extrapolated to the macroscopic realm generates observed behaviour. On the other hand languages and algorithms on the Web are built in order to produce novel desired computer behaviour that should be put in context. Finding a suitable curriculum that is different from the study of language, algorithms, interaction patterns and business processes is thus an important and challenging task for the simple reason that we believe that the future of sociotechnical systems will be in their innovative power (inventing new ways to solve problems), rather than their capacity to optimize current practices. The Web Science Curriculum Development (WSCD) Project focuses European expertise in this interdisciplinary endeavour with the ultimate aim of designing a joint masters program for Web Science between the partner universities. The process of curriculum definition is being addressed using a negotiation process which mirrors the web science and engineering approach described by Berners-Lee (figure 1 below). The process starts on the engineering side (right). From the technical design point of view the consortium is creating an open repository of shared educational artefacts using EdShare [1] (based on EPrints) to collect or reference the whole range of educational resources being used in our various programmes. Socially, these resources will be annotated against a curriculum categorization [2] which in itself is subject to negotiation and change, currently via a wiki. This last process is represented by complexity and collaboration at the bottom of the diagram. The resources necessarily extend beyond artefacts used in the lecture and seminar room encompassing artefacts associated with the administrative and organisational processes which are necessary to assure the comparability of the educational resources and underwrite the quality standards of the associated awards. Figure 1: Web Science and Engineering Approach (e.g. See http://www.w3.org/2007/Talks/0314-soton-tbl/#%2811%29) From the social point of view the contributions will be discussed and peer reviewed by members of the consortium. Our intention is that by sharing the individual components of the teaching and educational process and quality assuring them by peer review we will provide concrete examples of our understanding of the discipline. However, as Berners-Lee observes, it is in the move from the micro to the macro that the magic (complexity) is involved. The challenge for our consortium, once our community repository is adequately populated, is to involve the wider community in the contribution, discussion and annotation that will lead to the evolution of a negotiated and agreed but evolving curriculum for Web Science. Others have worked on using community approaches to developing curriculum. For example, in the Computer Science community there is a repository of existing syllabi [3] that enables designers of new courses to understand how others have approached the problem, and the Information Science community is using a wiki [4] to enable the whole community to contribute to the dynamic development of the curriculum. What makes this project unique is that rather than taking a top down structured approach to curriculum definition it takes a bottom up approach, using the actual teaching materials as the basis on which to iteratively negotiate and refine the definition of the curriculum
Negotiating the Web Science Curriculum through Shared Educational Artefacts
EXTENDED ABSTRACT The far-reaching impact of Web on society is widely recognised and acknowledged. The interdisciplinary study of this impact has crystallised in the field of study known as Web Science. However, defining an agreed, shared understanding of what constitutes Web Science requires complex negotiation and translations of understandings across component disciplines, national cultures and educational traditions. Some individual institutions have already established particular curricula, and discussions in the Web Science Curriculum Workshop series have marked the territory to some extent. This paper reports on a process being adopted across a consortium of partners to systematically create a shared understanding of what constitutes Web Science. It records and critiques the processes instantiated to agree a common curriculum, and presents a framework for future discussion and development. The need to study the Web in its complexity, development and impact led to the creation of Web Science. Web Science is inherently interdisciplinary. Its goal is to: a) understand the Web growth mechanisms; b) create approaches that allow new powerful and more beneficial mechanisms to occur. Teaching Web Science is a unique experience since the emerging discipline is a combination of two essential features. On one hand, the analysis of microscopic laws extrapolated to the macroscopic realm generates observed behaviour. On the other hand languages and algorithms on the Web are built in order to produce novel desired computer behaviour that should be put in context. Finding a suitable curriculum that is different from the study of language, algorithms, interaction patterns and business processes is thus an important and challenging task for the simple reason that we believe that the future of sociotechnical systems will be in their innovative power (inventing new ways to solve problems), rather than their capacity to optimize current practices. The Web Science Curriculum Development (WSCD) Project focuses European expertise in this interdisciplinary endeavour with the ultimate aim of designing a joint masters program for Web Science between the partner universities. The process of curriculum definition is being addressed using a negotiation process which mirrors the web science and engineering approach described by Berners-Lee (figure 1 below). The process starts on the engineering side (right). From the technical design point of view the consortium is creating an open repository of shared educational artefacts using EdShare [1] (based on EPrints) to collect or reference the whole range of educational resources being used in our various programmes. Socially, these resources will be annotated against a curriculum categorization [2] which in itself is subject to negotiation and change, currently via a wiki. This last process is represented by complexity and collaboration at the bottom of the diagram. The resources necessarily extend beyond artefacts used in the lecture and seminar room encompassing artefacts associated with the administrative and organisational processes which are necessary to assure the comparability of the educational resources and underwrite the quality standards of the associated awards. Figure 1: Web Science and Engineering Approach (e.g. See http://www.w3.org/2007/Talks/0314-soton-tbl/#%2811%29) From the social point of view the contributions will be discussed and peer reviewed by members of the consortium. Our intention is that by sharing the individual components of the teaching and educational process and quality assuring them by peer review we will provide concrete examples of our understanding of the discipline. However, as Berners-Lee observes, it is in the move from the micro to the macro that the magic (complexity) is involved. The challenge for our consortium, once our community repository is adequately populated, is to involve the wider community in the contribution, discussion and annotation that will lead to the evolution of a negotiated and agreed but evolving curriculum for Web Science. Others have worked on using community approaches to developing curriculum. For example, in the Computer Science community there is a repository of existing syllabi [3] that enables designers of new courses to understand how others have approached the problem, and the Information Science community is using a wiki [4] to enable the whole community to contribute to the dynamic development of the curriculum. What makes this project unique is that rather than taking a top down structured approach to curriculum definition it takes a bottom up approach, using the actual teaching materials as the basis on which to iteratively negotiate and refine the definition of the curriculum
Immunophoretic rapid diagnostic tests as a source of immunoglobulins for estimating malaria sero-prevalence and transmission intensity
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Sero-epidemiological methods are being developed as a tool for rapid assessment of malaria transmission intensity. Simple blood collection methods for use in field settings will make this more feasible. This paper describes validation of such a method, by analysing immunoglobulins from blood retained within immunophoretic rapid diagnostic tests (RDTs) for Plasmodium falciparum. RDTs are now widely used for the diagnosis of malaria and estimation of parasite rates, and this method represents a further use for these devices in malaria control. Methods Immunoglobulins eluted from RDTs, designed to detect parasite histidine rich protein-2 (HRP-2), were analysed by indirect ELISA for IgG recognizing the P. falciparum blood stage antigens merozoite surface protein-119 (MSP-119) and apical membrane antigen-1 (AMA-1). Optimal storage conditions for RDTs were evaluated by comparing antibody responses from RDTs stored in dry or humid conditions at 4°C or at ambient temperature (with or without air-conditioning) for 7, 31 or 70 days. Antibody levels estimated using 3,700 RDT samples from attendees at health facilities in North-eastern Tanzania were compared with contemporaneously collected filter paper blood spots (FPBS) and used to estimate seroconversion rates. Results Storage of RDTs at 4°C was optimal for immunoglobulin recovery but short-term storage at ambient temperatures did not substantially affect anti-malarial IgG levels. Results from RDTs were comparable with those from FPBSs, for both antigens. RDT-generated titres tended to be slightly higher than those generated from FPBSs, possibly due to greater recovery of immunoglobulins from RDTs compared to filter paper. Importantly, however, RDT-based seroconversion rates, and hence serological estimates of malaria transmission intensity, agreed closely with those from FPBSs. Conclusion RDTs represent a practical option for collecting blood for sero-epidemiological surveys, with potential cost and logistical advantages over filter paper and other blood collection methods. RDT-based seroepidemiology can be incorporated into routine monitoring of malaria endemicity, providing information to supplement parasite prevalence rates and generating rapid, robust assessment of malaria transmission intensity at minimal extra cost.Published versio
3D Selection of 167 Substellar Companions to Nearby Stars
© 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/We analyze 5108 AFGKM stars with at least five high-precision radial velocity points, as well as Gaia and Hipparcos astrometric data, utilizing a novel pipeline developed in previous work. We find 914 radial velocity signals with periods longer than 1000 days. Around these signals, 167 cold giants and 68 other types of companions are identified, through combined analyses of radial velocity, astrometry, and imaging data. Without correcting for detection bias, we estimate the minimum occurrence rate of the wide-orbit brown dwarfs to be 1.3%, and find a significant brown-dwarf valley around 40 M Jup. We also find a power-law distribution in the host binary fraction beyond 3 au, similar to that found for single stars, indicating no preference of multiplicity for brown dwarfs. Our work also reveals nine substellar systems (GJ 234 B, GJ 494 B, HD 13724 b, HD 182488 b, HD 39060 b and c, HD 4113 C, HD 42581 d, HD 7449 B, and HD 984 b) that have previously been directly imaged, and many others that are observable at existing facilities. Depending on their ages, we estimate that an additional 10–57 substellar objects within our sample can be detected with current imaging facilities, extending the imaged cold (or old) giants by an order of magnitude.Peer reviewe
Replacing natural wetlands with stormwater management facilities: biophysical and perceived social values
Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these drivers are relatively fixed, thus, once constructed, it may not be possible to modify them to improve provision of biophysical values; 5) these fixed drivers are not well perceived by the public and thus public perception may not capture the true value of natural wetlands, including those impacted by agriculture
The Amazonian Formative: Crop Domestication and Anthropogenic Soils
The emergence of sedentism and agriculture in Amazonia continues to sit uncomfortably within accounts of South American pre-Columbian history. This is partially because deep-seated models were formulated when only ceramic evidence was known, partly because newer data continue to defy simple explanations, and partially because many discussions continue to ignore evidence of pre-Columbian anthropogenic landscape transformations. This paper presents the results of recent geoarchaeological research on Amazonian anthropogenic soils. It advances the argument that properties of two different types of soils, terras pretas and terras mulatas, support their interpretation as correlates of, respectively, past settlement areas and fields where spatially-intensive, organic amendment-reliant cultivation took place. This assessment identifies anthropogenic soil formation as a hallmark of the Amazonian Formative and prompts questions about when similar forms of enrichment first appear in the Amazon basin. The paper reviews evidence for embryonic anthrosol formation to highlight its significance for understanding the domestication of a key Amazonian crop: manioc (Manihot esculenta ssp. esculenta). A model for manioc domestication that incorporates anthropogenic soils outlines some scenarios which link the distribution of its two broader varieties—sweet and bitter manioc—with the widespread appearance of Amazonian anthropogenic dark earths during the first millennium AD
Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease
Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre
- …