28 research outputs found

    SENSE EPI reconstruction with 2D phase error correction and channel-wise noise removal

    Get PDF
    Nyquist ghost; Denoising; DiffusionFantasma de Nyquist; Eliminación de ruido; DifusiónFantasma de Nyquist; Eliminació de soroll; DifusióPurpose To develop a robust reconstruction pipeline for EPI data that enables 2D Nyquist phase error correction using sensitivity encoding without incurring major noise artifacts in low SNR data. Methods SENSE with 2D phase error correction (PEC-SENSE) was combined with channel-wise noise removal using Marcenko–Pastur principal component analysis (MPPCA) to simultaneously eliminate Nyquist ghost artifacts in EPI data and mitigate the noise amplification associated with phase correction using parallel imaging. The proposed pipeline (coined SPECTRE) was validated in phantom DW-EPI data using the accuracy and precision of diffusion metrics; ground truth values were obtained from data acquired with a spin echo readout. Results from the SPECTRE pipeline were compared against PEC-SENSE reconstructions with three alternate denoising strategies: (i) no denoising; (ii) denoising of magnitude data after image formation; (iii) denoising of complex data after image formation. SPECTRE was then tested using high -value (i.e., low SNR) diffusion data (up to  s/mm ) in four healthy subjects. Results Noise amplification associated with phase error correction incurred a 23% bias in phantom mean diffusivity (MD) measurements. Phantom MD estimates using the SPECTRE pipeline were within 8% of the ground truth value. In healthy volunteers, the SPECTRE pipeline visibly corrected Nyquist ghost artifacts and reduced associated noise amplification in high -value data. Conclusion The proposed reconstruction pipeline is effective in correcting low SNR data, and improves the accuracy and precision of derived diffusion metrics.EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging, Grant/Award Number: EP/L016478/

    Measuring brain atrophy with a generalized formulation of the boundary shift integral

    Get PDF
    AbstractBrain atrophy measured using structural magnetic resonance imaging (MRI) has been widely used as an imaging biomarker for disease diagnosis and tracking of pathologic progression in neurodegenerative diseases. In this work, we present a generalized and extended formulation of the boundary shift integral (gBSI) using probabilistic segmentations to estimate anatomic changes between 2 time points. This method adaptively estimates a non-binary exclusive OR region of interest from probabilistic brain segmentations of the baseline and repeat scans to better localize and capture the brain atrophy. We evaluate the proposed method by comparing the sample size requirements for a hypothetical clinical trial of Alzheimer's disease to that needed for the current implementation of BSI as well as a fuzzy implementation of BSI. The gBSI method results in a modest but reduced sample size, providing increased sensitivity to disease changes through the use of the probabilistic exclusive OR region

    Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI

    Get PDF
    Atrophy of the brain grey matter (GM) is an accepted and important feature of multiple sclerosis (MS). However, its accurate measurement is hampered by various technical, pathological and physiological factors. As a consequence, it is challenging to investigate the role of GM atrophy in the disease process as well as the effect of treatments that aim to reduce neurodegeneration. In this paper we discuss the most important challenges currently hampering the measurement and interpretation of GM atrophy in MS. The focus is on measurements that are obtained in individual patients rather than on group analysis methods, because of their importance in clinical trials and ultimately in clinical care. We discuss the sources and possible solutions of the current challenges, and provide recommendations to achieve reliable measurement and interpretation of brain GM atrophy in MS

    Changes in the Frontotemporal Cortex and Cognitive Correlates in First-Episode Psychosis

    Get PDF
    Background: Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters.Methods: Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function.Results: Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered.Conclusions: Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases

    Multimodal Analysis of the Visual Pathways in Friedreich's Ataxia Reveals Novel Biomarkers

    Get PDF
    Background: Optic neuropathy is a near ubiquitous feature of Friedreich's ataxia (FRDA). Previous studies have examined varying aspects of the anterior and posterior visual pathways but none so far have comprehensively evaluated the heterogeneity of degeneration across different areas of the retina, changes to the macula layers and combined these with volumetric MRI studies of the visual cortex and frataxin level. Methods: We investigated 62 genetically confirmed FRDA patients using an integrated approach as part of an observational cohort study. We included measurement of frataxin protein levels, clinical evaluation of visual and neurological function, optical coherence tomography to determine retinal nerve fibre layer thickness and macular layer volume and volumetric brain MRI. Results: We demonstrate that frataxin level correlates with peripapillary retinal nerve fibre layer thickness and that retinal sectors differ in their degree of degeneration. We also shown that retinal nerve fibre layer is thinner in FRDA patients than controls and that this thinning is influenced by the AAO and GAA1. Furthermore we show that the ganglion cell and inner plexiform layers are affected in FRDA. Our MRI data indicate that there are borderline correlations between retinal layers and areas of the cortex involved in visual processing. Conclusion: Our study demonstrates the uneven distribution of the axonopathy in the retinal nerve fibre layer and highlight the relative sparing of the papillomacular bundle and temporal sectors. We show that thinning of the retinal nerve fibre layer is associated with frataxin levels, supporting the use the two biomarkers in future clinical trials design. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Societ

    Exploring patterns of Alteration in Alzheimer's disease brain networks: A combined structural and functional connectomics analysis

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the "disconnection syndrome" hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks (RSNs) in patients affected by AD and mild cognitive impairment (MCI). However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC). In the default mode network (DMN), that was the most affected, axonal loss, and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN), disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN), neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI) but also with subcortical alterations (revealed by diffusion MRI) that extend beyond the areas primarily damaged by neurodegeneration, toward the support of an emerging concept of AD as a "disconnection syndrome." Since only AD but not MCI patients were characterized by a significant decrease in structural connectivity, integrated structural/functional connectomics could provide a useful tool for assessing disease progression from MCI to A

    A multi-time-point modality-agnostic patch-based method for lesion filling in multiple sclerosis

    Get PDF
    Multiple sclerosis lesions influence the process of image analysis, leading to tissue segmentation problems and biased morphometric estimates. Existing techniques try to reduce this bias by filling all lesions as normal-appearing white matter on T1-weighted images, considering each time-point separately. However, due to lesion segmentation errors and the presence of structures adjacent to the lesions, such as the ventricles and deep grey matter nuclei, filling all lesions with white matter-like intensities introduces errors and artefacts. In this paper, we present a novel lesion filling strategy inspired by in-painting techniques used in computer graphics applications for image completion. The proposed technique uses a five-dimensional (5D), patch-based (multi-modality and multi-time-point), Non-Local Means algorithm that fills lesions with the most plausible texture. We demonstrate that this strategy introduces less bias, fewer artefacts and spurious edges than the current, publicly available techniques. The proposed method is modality-agnostic and can be applied to multiple time-points simultaneously. In addition, it preserves anatomical structures and signal-to-noise characteristics even when the lesions are neighbouring grey matter or cerebrospinal fluid, and avoids excess of blurring or rasterisation due to the choice of the segmentation plane, shape of the lesions, and their size and/or location
    corecore