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Brain atrophy measured using structural magnetic resonance imaging (MRI) has been widely used as an
imaging biomarker for disease diagnosis and tracking of pathologic progression in neurodegenerative
diseases. In this work, we present a generalized and extended formulation of the boundary shift integral
(gBSI) using probabilistic segmentations to estimate anatomic changes between 2 time points. This
method adaptively estimates a non-binary exclusive OR region of interest from probabilistic brain seg-
mentations of the baseline and repeat scans to better localize and capture the brain atrophy. We evaluate
the proposed method by comparing the sample size requirements for a hypothetical clinical trial of
Alzheimer’s disease to that needed for the current implementation of BSI as well as a fuzzy imple-
mentation of BSI. The gBSI method results in a modest but reduced sample size, providing increased
sensitivity to disease changes through the use of the probabilistic exclusive OR region.

� 2015 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Imaging biomarkers have become a key tool for early detection,
differential diagnosis, and disease progression in neurodegenera-
tive diseases in the last decade (Gustaw-Rothenberg et al., 2010).
Using these biomarkers as outcome measures in trials would also
have the potential to show a disease modifying effect on fewer
subjects than standard cognitive tests, with proper enrichment
strategies making these useful for predementia trials. (Grill et al.,
2013; Schott et al., 2010).

Rates of whole brain and hippocampal atrophy from longitudi-
nal magnetic resonane imaging (MRI) scans can aid in disease
diagnosis and tracking of pathologic progression in
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neurodegenerative diseases and are increasingly used as outcome
measures in trials of potentially disease-modifying therapies
(Anderson et al., 2006; Frisoni et al., 2010; Holland et al., 2012;
Sharma et al., 2010; Sluimer et al., 2010). Popular methods for
brain atrophy measurement in longitudinal studies include
Boundary Shift Integral (BSI) (Freeborough and Fox, 1997; Leung
et al., 2010b, 2012), Structural Image Evaluation, using Normaliza-
tion, of Atrophy (SIENA) (Smith et al., 2001), Quantitative
Anatomical Regional Change (QUARC) (Holland and Dale, 2011),
Tensor-Based Morphometry (TBM) (Hua et al., 2013), and
FreeSurfer-longitudinal (FS) (Reuter et al., 2012). BSI and SIENA both
use linear registration to align the baseline and repeat images and
then track the shift of the brain boundary location, whereas QUARC
and TBM both use nonlinear registrations to map between the
baseline and repeat images and then measure volume change
through analysis of the resulting deformation fields. FS is based on
performing independent tissue segmentation at each time point
and build subject-specific average from the time points. These an-
alyses can be limited to specific ROIs, such as the entorhinal cortex
or the hippocampus, to better localize where atrophy is occurring.

BSI has been shown to provide accurate measurements of brain
atrophy that are sensitive biomarkers of disease progression (Leung
et al., 2012). The pipeline consists of several processing steps,
including intensity normalization, segmentation, registration, and
ts reserved.
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differential bias correction (Leung et al., 2010b). A key step in the
BSI pipeline is the region extraction process. It is essential that
the boundary defining the region of interest be accurate, defining
the interface between tissue and cerebrospinal fluid (CSF), correctly
detecting sulcal and ventricular boundaries, to produce an accurate
and robust measurement of atrophy. Whether automatically
segmented or manually delineated by trained experts, there still
will be some partial volume effects or segmentation errors that
remain. Thus, a boundary shift region is created from the extracted
regions of baseline and repeat scans by performing an exclusive OR
(XOR) operation on the dilated union and eroded intersection re-
gions of the baseline and repeat binary masks. However, this
operation may still cause non-brain tissues to be included (e.g.,
dura), which may introduce noise, and thus, reduce sensitivity to
themeasurement. The consistency and test-retest reproducibility of
BSI has been demonstrated recently in Leung et al. (2012).

Ledig et al. (2012) proposed to modify the BSI method by using
probabilistic segmentations of the brain and other regions of in-
terest (the method is referred as “pBSI”). The probabilistic masks
from the baseline and repeat scans were combined through a fuzzy
union and intersection and then binarized using parameterized
thresholds. The boundary shift region was then created using the
dilated union region and the eroded intersection region, whichmay
still cause non-brain tissues to be included. Then, the XOR region
was weighted according to the probability that it contained brain
tissue. Finally, the BSI integral was calculated using the weighted
XOR region.

The pBSI method (Ledig et al., 2012) is based on standard BSI
(Freeborough and Fox, 1997), where BSI is calculated with a manual
and fixed intensity window rather than performing tissue-specific
intensity normalization and parameter selection done by “KN-
BSI” (Leung et al., 2010b). Moreover, measuring hippocampal at-
rophy means that we have to apply a double intensity window to
capture boundary shift at both the hippocampal GM-CSF border
and the hippocampal GM-WM border (Hobbs et al., 2009). Finally,
according to Lindley (1987), a probabilistic formulation is a more
sensible description of uncertainty than the fuzzy framework used
in Ledig et al. (2012) and should be ideal for all problems involving
uncertainty.

In this work, we propose a generalized formulation of the BSI,
which incorporates probabilistic spatial information, because as
Manjón et al. (2010) demonstrated, using spatial information in
combination with an appropriate tissue parameter estimation im-
proves the tissue volume estimation. The algorithm adaptively es-
timates a non-binary XOR region of interest from probabilistic brain
segmentations of the baseline and repeat scans using probabilistic
logic operations to better localize and capture the brain atrophy.
The proposed method uses the probabilistic segmentations ob-
tained from a multiatlas propagation and label fusion algorithm
(Cardoso et al., 2013) to adaptively select a spatial window. The aim
of the proposed framework is to increase the sensitivity to disease-
related change. We evaluated the proposed method by comparing
atrophy rates and sample sizes to the current implementation of
our KN-BSI method (Leung et al., 2010b) and pBSI method (Ledig
et al., 2012).

2. Methods

2.1. MRI data

Data used in the preparation of this article were obtained from
the ADNI database (www.loni.ucla.edu/ADNI), which was launched
in 2003. The primary goal of ADNI has been to test whether serial
MRI, positron emission tomography, other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment and early
Alzheimer’s disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effec-
tiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California, San Francisco.
ADNI is the result of efforts of many coinvestigators from a broad
range of academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the United States
and Canada. The initial goal of ADNI was to recruit 800 adults, aged
55e90 years to participate in the research (approximately 200
cognitively normal older individuals, 400 people with mild cogni-
tive impairment, and 200 people with early AD). For up-to-date
information, see http://www.adni-info.org.

In this work, we used baseline and 12months follow-up scans of
328 subjects at 1.5 T (195 controls and 155 AD) and 63 subjects at 3T
(39 controls and 24 AD), which represents the ADNI-1 subjects
available for standard analysis data sets who had T1-weighted MRI
scans at baseline, 6 months, and 12 months (Wyman et al., 2013).

All images downloaded from the ADNI database had already
been preprocessed through the standard pipeline. This pipeline
includes N3 correction for image inhomogeneity (Sled et al., 1998),
B1 nonuniformity correction (Narayana et al., 1988), GradWarp
correction for geometric distortion (Jovicich et al., 2006), and
phantom-based scaling correction (Gunter et al., 2006)dthe geo-
metric phantom scan having been acquired with each patient scan.

2.2. Template library

The template library used in this work consisted of the 682 1.5 T
MRI images from the baseline scans of ADNI. For each image in the
template library, we had associated manual segmentations of the
brain. We also had manual segmentations of 55 left and 55 right
hippocampal, which were flipped along the left-right as in Leung
et al. (2010b) to increase the template library to 110 samples.

Because both the brain template library and the image data are
from ADNI, a leave-one-out cross-validation approach is used, that
is, the target image is excluded from the template library.

2.3. Pipeline overview

An overview of the whole pipeline is shown in Fig. 1. An extra
preprocessing step for intensity inhomogeneity correction was
applied to the ADNI scans using a robust version of the N3 algo-
rithm, as proposed in Boyes et al. (2008), see Fig. 2. The pre-
processed scans were independently segmented using a
segmentation propagation and fusion method, which provided
probabilistic masks for each image. The next step was a symmetric
and inverse-consistent registration to the middle space of the 2
time-point images using 12 degrees of freedom (DOF) registration
(Modat et al., 2014). A symmetric differential bias correction (DBC)
was then applied to both registered images to reduce the residual
bias field between them. Finally, the atrophy was calculated using
the proposed generalized BSI method, denoted as gBSI.

2.3.1. Multiatlas similarity segmentation
Probabilistic masks were obtained using a multi-atlas segmen-

tation propagation and fusion technique called STEPS (Cardoso
et al., 2013). This segmentation process is divided in 2 stages:
segmentation propagation and fusion. Starting from a template li-
brary with associated manual segmentations, all the templates
(excluding the image under analysis) are first registered to the
target image. The normalized cross correlation (NCC) is then esti-
mated between each deformed template and the target image,

http://www.loni.ucla.edu/ADNI
http://www.adni-info.org


Fig. 1. Diagram representing the gBSI different processing steps for atrophy estimation. Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; BSI, boundary shift
integral; DOF, degrees of freedom; gBSI, generalized boundary shift integral.
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quantifying the similarity between 2 images. For the whole brain
(hippocampus), the 30 (15) most similar deformed templates ac-
cording to the NCC are fused into a consensus segmentation ac-
cording to the locally NCC between the registered template images
and the target image. A consensus probabilistic brain and hippo-
campal segmentation is obtained using the STEPS algorithm, as
implemented in NiftySeg. The probabilistic nature of the consensus
segmentation implicitly encodes segmentation uncertainty,
improving sulcal delineation and tissue boundary localization.

2.3.2. Symmetric and inverse-consistent registration
The use of a symmetric and inverse-consistent registration en-

sures that the BSI findings are unbiased toward the directionality of
the registration process. Using the obtained transformations, all
input images are resampled to a middle space (Reuter et al., 2010;
Smith et al., 2002). It ensures that all images are treated similarly
as they all receive the same degree of interpolation-related blur-
ring. The symmetric full affine approach (Modat et al., 2014), 12
DOFs, that we used, is based on the asymmetric block-matching
approach initially described by Ourselin et al. (2001). The forward
and backward transformations are optimized concurrently in an
inverse-consistent manner. The implementation is freely available
from the NiftyReg package.

Similarly to previous work by Leung et al. (2012), all registra-
tions were performed by considering 8-voxel dilated brain regions
of interest. Note that contrary to the previous version of BSI
(Freeborough and Fox, 1997; Leung et al., 2010b), which used 9
DOF (includes translation, rotation, and scale parameters), we use
12 DOF instead of the 9 DOF because 9 DOF registration is inher-
ently asymmetric (Leung et al., 2012). This asymmetry could then
introduce a bias in the atrophy estimates. If either image can be
scaled anisotropically along their own axes, and the images are
acquired such that these axes need to be rotated to align anatomy,
Fig. 2. Extra N3 correction. (A) Initial scan with the template-12-dof mask overlai
then the separate scalings together with the rotation between the
pairs of axes effectively allow skews. More formally, 12 DOF
transformations form a matrix Lie group with an associated semi-
Riemannian manifold so their inverses and compositions are also
12 DOF; this is not generally true of 9 DOF transformations, whose
inverses or compositions are only guaranteed to be within the
broader 12 DOF group. Thus, we parameterize the 12 DOF trans-
formation as 3 translations, 3 rotations in Euler angles, 3 scaling
factors, and 3 skew factors, and the full matrix is optimized
directly.

2.3.3. Symmetric differential bias correction
Although the data has been previously corrected for intensity

inhomogeneity using N3 Boyes et al. (2008), a symmetric DBC is
also applied to the registered baseline and repeat images. The DBC
is used to correct the residual intensity inhomogeneity-derived
differences between the baseline and the repeat images. A DBC
kernel with a radius of 5 was used for all experiments (Lewis and
Fox, 2004).

2.4. Generalized boundary shift integral

The BSI can be described by 4 different steps: (1) image are
normalized according to the average tissue intensity; (2) the in-
tensity clipping window is computed; (3) the probabilistic
boundary-shift region of interest is obtained; and (4) the BSI inte-
gral is finally estimated.

2.4.1. Intensity normalization
DBC-baseline and repeathalf-wayregistered imagesare intensity

normalized using linear regression coefficients (Leung et al., 2010b).
These coefficients are obtained from the computation of mean in-
tensities of CSF, GM, WM, and the interior brain region using a
d. (B) Corrected scan. (C) Subtraction between initial scan and corrected scan.
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k-means clustering algorithm. The k-means is restricted to a region
of interest defined as the 0.5 thresholded and binarized probabilistic
brain mask, further dilated by 3 voxels to include some CSF.

2.4.2. Intensity clipping window calculation
The intensity clipping windows [Ilow, Ihigh] for each image are

obtained from:

Ilow ¼ meanðICSFÞ þ stdðICSFÞ (1)

and

Ihigh ¼ meanðIGMÞ � stdðIGMÞ (2)

The BSI intensity clipping window is then defined as the average
of the intensity windows of the 2 time points.

2.4.3. Probabilistic boundary shift region
Using probabilistic operations, we calculate the exclusive OR

region (pXOR) from the half-way resampled consensus region ob-
tained with STEPS. The pXOR is defined as:

pXORðA;BÞ ¼ �
A� B

�þ �
A� B

��
��

A� B
�� �

A� B
��

(3)

where A and B corresponds to the half-way registered baseline and
repeat probabilistic regions, respectively and A and B to their
complement. The pXOR value approaches 1 when the segmenta-
tions disagree between the 2 time points, for example, when 1 time
point has a very high probability to belong to the ROI, whereas the
other time point has a very low probability. After the pXOR calcu-
lation each voxel ðx; y; zÞ ε pXORðRt ;Rtþ1Þ is weighted by a gain
factor k, using the following criterion:

RpXOR ¼
8<
:

pXORðx; y; zÞ
k

if pXORðx; y; zÞ < k

1 otherwise:
(4)

We used the mean of all non-zero voxels of the pXOR region as a
k value. The use of the mean, instead of a fixed value, provides an
adaptive behavior to our algorithm. The gain factor k acts in a
similar way to the dilation and/or erosion operations in the classic
BSI, increasing the size of the region of interest. Note that, if we use
a k of 1 and if the brainmask is binarised to 0.5, then gBSI will revert
to the classic KN-BSI formulation.
Fig. 3. Comparison between binary XOR of the previous BSI (Freeborough and Fox, 1997; Leu
probabilistic weighted XOR of gBSI. X axis represent the tissue displacement along the bound
segmentation of the baseline and repeat images. Different boundary shifts and slope-rates
sentation of the binary XOR from the classic BSI. This region of interest is produced by thres
for XOR estimation. The magenta line is fuzzy XOR of pBSI with gh 1, and the partial overlap
line corresponds to RpxOR. Abbreviations: AD, Alzheimer’s disease; BSI, boundary shift integra
in this Figure, the reader is referred to the web version of this article.)
The differences between the binary XOR and pXOR are shown in
Fig. 3. Fig. 3A shows low uncertainty and small shift between 2
masks, reflecting the situation where the boundaries are well
defined, that is, for control patients. On the other hand, Fig. 3B
represents a high uncertainty configuration, simulating the exis-
tence of atrophy and uncertainty between the 2 time points, that is,
in AD patients.

Fig. 4 and Fig. 5 illustrate the resulting XOR regions for the
various implementations of the BSI. The pXOR area (last column)
appears quite similar to the conventional KN-BSI XOR region, except
that the periphery of the region is weighted to be less than 1. It also
appears to be generally more sensitive to the presence of closed
sulci than the binary XOR, improving atrophy detection as illus-
trated by the red regions in these areas. The k gain factor boosts the
relevance of voxels surrounding the ROI boundary.

2.4.4. Generalized boundary shift integral
gBSI is calculated for each voxel (x,y,z) of the whole volume V.

The proposed generalized formulation takes into account the dif-
ferences between clipped image intensities weighted by the edge’s
membership function RpxOR (x,y,z). Therefore, gBSI is defined as:

gBSI ¼ D
X

x;y;zεV

RpXORðx; y; zÞðclipðIAðx; y; zÞÞ � clipðIBðx; y; zÞÞÞ

(5)

where D is the voxel volume in mm3 and clip is a function defined
as:

clipðIðx; y; zÞÞ ¼
min

�
maxðIðx; y; zÞ; IlowÞ; Ihigh

�
� Ilow

Ihigh � Ilow
(6)

2.5. Parameter choice

There are parameters in each BSI step that could be tuned for an
optimal result for a specific data cohort. However, the parameter
choices used in this study have been well validated in previous
papers and are used in our standard practice pipeline that has been
used for thousands of brain scans at our centre. We keep them fixed
for all our experiments, Table 1 presents the full parameter list that
we have used.
ng et al., 2010b, 2012), fuzzy XOR of pBSI with gh 1 and g h 0.5 (Ledig et al., 2012) and
ary, Y axis represent segmentation probabilities and red lines represent the probabilistic
are used to simulate a control (A) and an AD brain (B). The yellow line is the repre-

holding the probability at 0.5 followed by the dilation and/or erosion of the boundaries
ped dashed green line is using gh 0.5. Dashed blue line is the estimated pXOR, and blue
l; gBSI, generalized boundary shift integral. (For interpretation of the references to color



Fig. 4. Example of whole brain XOR regions, for manual KN-BSI, STEPS-KN-BSI, pBSI1, pBSIg, and gBSI, obtained on an AD patient. In yellow binary XOR regions and in a red-yellow
scale the XOR pBSIg and gBSI values from 0 to 1. Abbreviations: AD, Alzheimer’s disease; BSI, boundary shift integral; gBSI, generalized boundary shift integral. (For interpretation of
the references to color in this Figure, the reader is referred to the web version of this article.)
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The proposed process provides a fully automated and highly
robust methodology for image analysis, without the need for hu-
man interaction. Although no failurewas observed with the present
study, as with any automated method, there might be a possibility
of failure for some subjects. Nonetheless, 2 approaches can be used
to mitigate these problems: either use the data from subjects that
failed in a normal manner, but use robust statistics to detect and
remove the influence of outlier data points in population studies or
have a staged quality control process with a manual correction of
the most sensitive and error prone procedures (e.g., affine regis-
tration to the template space).

3. Evaluation

For evaluation, we compared gBSI, pBSI, and KN-BSI using
manual segmentations (referred to as “manual-KN-BSI”) and
binarised segmentations from STEPS (referred to as “STEPS-KN-
BSI”) (see Figs. 6 and 7). To investigate the effect of gBSI on both
large and small structures, we applied the methods to calculate the
whole brain and hippocampal atrophy rates. However, as manual
hippocampal regions were not available for most subjects, the
Fig. 5. Example of hippocampus XOR regions, for STEPS-KN-BSI, pBSI1, pBSIg, and gBSI, obta
gBSI values from 0 to 1. Abbreviations: AD, Alzheimer’s disease; BSI, boundary shift integral;
this Figure, the reader is referred to the web version of this article.)
manual-KN-BSI method was excluded from the hippocampal
analysis.

A double intensity-window KN-BSI was used to calculate the
hippocampal atrophy rates (Leung et al., 2010a). The BSI double
intensity window approach was previously described in Hobbs
et al. (2009). The double intensity window was included to cap-
ture boundary shift at both the hippocampus-CSF border and the
hippocampus-WM border. The optimal intensity window parame-
ters were chosen using the same automatic intensity window se-
lection method used by the single window approach.

As STEPS segmentations are not identical to manual segmenta-
tions, we included STEPS-KN-BSI in the comparison to understand
if the improvement in gBSI comes from the probabilistic formula-
tion or from the binarised STEPS segmentations.

To show the difference between pBSI and gBSI XOR mask, we
have used 2 versions of pBSI XOR mask in a KN-BSI pipeline, that
improves previous classic-BSI method (Freeborough and Fox, 1997)
used in Ledig et al. (2012), performing a tissue-specific intensity
normalization and automated intensity window selection. The 2
versions of pBSI XOR are obtained using the proposed parameters in
Ledig et al. (2012) (h ¼ 0.95, ne ¼ 0, z ¼ 0.90, and nd ¼ 1), one is
ined on an AD patient. In yellow binary XOR regions and in a red-yellow scale the XOR
gBSI, generalized boundary shift integral. (For interpretation of the references to color in



Table 1
Full parameter selection used by gBSI

Processing step Parameter name Value Reference

N3 Spline distance 150 Boyes et al. (2008)
FWHM 0.05
Stopping threshold 0.0001
Iterations 1000
Resampling value 2

Segmentation Top brain templates
to be fused

30 Cardoso et al. (2013)

Top hippocampus
templates to be fused

15

Registration Mask dilations 8 Leung et al. (2012)
DBC Kernel size 5 Lewis and Fox (2004)
K-means Mask dilations 3 Leung et al. (2010a)

Key: DBC, differential bias correction; gBSI, generalized boundary shift integral.

Fig. 6. Diagram representing manual-KN-BSI, STEPS-KN-BSI, pBSI, and gBSI processing
pipelines. Abbreviations: BSI, boundary shift integral; gBSI, generalized boundary shift
integral.
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referred as pBSI1 and used as weighting function g h 1, and the
other is pBSIg that corresponds to g h 0.5.

As there are no ground truths available for atrophymeasures, we
attempted to validate the algorithms by evaluating group separa-
tion in the context of measuring disease modification in a hypo-
thetical clinical trial for AD.We compared the sample sizes required
from manual-KN-BSI, STEPS-KN-BSI, pBSI1, pBSIg, and gBSI. Annu-
alized Percentage Brain Volume Change (PBVC) was calculated by
dividing the BSI value by the volume of binarised baseline regis-
tered mask and the scan interval. Sample sizes per arm in a hypo-
thetical AD trial (80% power at the 5% significance level) to detect
25% reduction in disease progression both with and without con-
trolling for normal aging in controls were calculated using the
following formula:

Sample size ¼ ð0:841þ 1:96Þ2�2s2�

D2 (7)

where s denotes the variance in the treatment and placebo groups
(assuming s is the same in treatment and placebo groups (Fox et al.,
2000)). D is the change in annualized PBVC between the treatment
groups.

We obtained bias-corrected bootstrap CIs (10,000 bootstrap
samples) for each of the estimated sample sizes and also for the
ratio of the sample sizes between different methods. Statistical
analyses were performed using Stata version 10 (College Station,
TX, USA).
Fig. 7. Example of atrophy voxelwise value for hippocampus area, for STEPS-KN-BSI, pBSI1, p
or light-blue and growth in red and/or orange. Abbreviations: AD, Alzheimer’s disease; BSI,
the references to color in this Figure, the reader is referred to the web version of this artic
4. Results

Table 2 shows the mean and standard deviation of the annual-
ized PBVC. Themean PBVC in controls were quite similar inmanual-
KN-BSI, STEPS-KN-BSI, and gBSI for 1.5 T and 3 T scans, although
some of these differences, although less than 0.1% absolute atrophy,
were significant using a paired t test. When comparing gBSI with
BSIg, and gBSI, obtained on an AD patient. Measured atrophy is represented in blue and/
boundary shift integral; gBSI, generalized boundary shift integral. (For interpretation of
le.)



Table 2
Mean (SD) of annualized whole-brain PBVC atrophy rates between manual-KN-BSI, STEPS-KN-BSI, pBSI1, pBSIg, and gBSI for ADNI

Manual-KN-BSI STEPS-KN-BSI pBSI1 pBSIg gBSI

1.5 T
Controls (N ¼ 195) 0.56 (0.60) 0.55 (0.56) 0.49 (0.51) 0.34 (0.36) 0.53 (0.56)
AD (N ¼ 133) 1.40 (0.77) 1.35 (0.72) 1.25 (0.65) 0.88 (0.48) 1.34 (0.69)

3 T
Controls (N ¼ 39) 0.45 (0.79) 0.40 (0.73) 0.39 (0.75) 0.22 (0.51) 0.39 (0.71)
AD (N ¼ 24) 1.26 (0.71) 1.22 (0.70) 1.24 (0.72) 0.81 (0.47) 1.20 (0.69)

Comparison Difference in mean (95% CI), p-value

1.5 T 3T

Manual-KN-BSI versus STEPS-KN-BSI
Controls 0.008 (�0.009 to 0.025), 0.3 0.050 (�0.006 to 0.107), <0.1
AD 0.050 (0.024e0.076), <0.001 0.036 (�0.016 to 0.089), 0.16

Manual-KN-BSI versus gBSI
Controls 0.029 (0.011e0.047), <0.01 0.059 (0.001e0.117), <0.05
AD 0.060 (0.033e0.088), <0.001 0.059 (0.005e0.113), <0.05

STEPS-KN-BSI versus gBSI
Controls 0.021 (0.005e0.037), <0.01 0.008 (�0.002 to 0.019), 0.1
AD 0.010 (�0.005 to 0.025), 0.2 0.022 (0.011e0.033), <0.001

pBSI1 versus gBSI
Controls �0.042 (�0.052 to �0.031), <0.001 0.001 (�0.021 to 0.021), 0.99
AD �0.091 (�0.103 to �0.078), <0.001 0.031 (0.012e0.050), <0.005

pBSIg versus gBSI
Controls �0.191 (�0.221 to �0.161), <0.001 �0.172 (�0.248 to �0.096), <0.001
AD �0.454 (�0.493 to �0.415), <0.001 �0.398 (�0.499 to �0.297), <0.001

Key: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; BSI, boundary shift integral; CI, confidence interval; gBSI, generalized boundary shift
integral; PBVC, percentage brain volume change; SD, standard deviation.
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pBSI in the same subjects, the pBSI algorithm results in significantly
lower atrophy values in both controls and AD for 1.5 T and 3 T.
Significantly lower atrophy was most notable in the pBSIg for 1.5 T
and 3 T scans.

Table 3 shows the estimated sample sizes calculated from
manual-KN-BSI, STEPS-KN-BSI, and gBSI. Similar sample sizes were
obtained for manual-KN-BSI and STEPS-KN-BSI (p > 0.05). We ob-
tained a smaller sample size for gBSI using 1.5 T scans, with a 13%
(211e183) reduction when compared with manual-KN-BSI and a
10% (203e183) reduction when compared with STEPS-KN-BSI.
Table 3
Estimated sample sizes (95% CI) per arm using whole brain annualized PBVC (80% power
without controlling for normal aging calculated from manual-KN-BSI, STEPS-KN-BSI, pBS

Manual-KN-BSI STEPS-

1.5 T
Based on AD atrophy rates alone (N ¼ 133) 76 (58e100) 71 (5
Controlling for normal aging (N ¼ 328) 211 (142e340) 203 (1

3 T
Based on AD atrophy rates alone (N ¼ 24) 81 (37e162) 82 (4
Controlling for normal aging (N ¼ 63) 194 (70e854) 179 (7

Comparison Percentage differen

1.5 T

Manual-KN-BSI versus STEPS-KN-BSI
AD rates alone �6.6 (�13.4 to 0.6
Controlling for aging �3.8 (�13.2 to 6.4

Manual-KN-BSI versus gBSI
AD rates alone �12.1 (�18.8 to �5
Controlling for aging �13.3 (�21.6 to �4

STEPS-KN-BSI versus gBSI
AD rates alone �6.5 (�10.6 to �2
Controlling for aging �9.8 (�16.0 to �3

pBSI1 versus gBSI
AD rates alone �2.4 (�5.0 to 0.6)
Controlling for aging �1.0 (�4.4 to 3.0)

pBSIg versus gBSI
AD rates alone �10.7 (�15.2 to �5
Controlling for aging �7.0 (�12.5 to �1

Key: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; BSI,
integral; PBVC, percentage brain volume change.
Reductions of 6% when controlling for aging are also present when
comparing gBSI with pBSIg. We did not detect any statistical dif-
ference in sample size between different methods in 3T, possibly
because of the smaller number of available 3T scans compared with
1.5 T scans.

Tables 4 and 5 show the results for the hippocampal experi-
ments. Although the atrophy rates in gBSI are significantly lower
than the same measures from STEPS-KN-BSI, there are no differ-
ences in the resulting sample size. However, the pBSI1 values result
in significantly lower atrophy rates for 1.5 T scans and significantly
at the 5% significance level to detect 25% reduction in disease progression) with and
I1, pBSIg, and gBSI for ADNI

KN-BSI pBSI1 pBSIg gBSI

3e96) 68 (51e93) 75 (56e99) 66 (50e90)
37e327) 185 (125e285) 197 (135e301) 183 (123e284)

0e158) 84 (40e162) 86 (41e171) 82 (40e159)
2e675) 180 (70e644) 161 (61e573) 179 (69e629)

ce of sample size (95% CI), p-value

3T

), >0.05 1.4 (�10.9 to 20.1), >0.05
), >0.05 �0.8 (�29.1 to 15.9), >0.05

.0), <0.05 �1.7 (�10.8 to 20.6), >0.05

.2), <0.05 �7.5 (�28.9 to 16.6), >0.05

.3), <0.05 �0.3 (�3.3 to 3.3), >0.05

.5), <0.05 0.0 (�4.8 to 4.3), >0.05

, >0.05 �3.2 (�6.6 to 1.2), >0.05
, >0.05 �0.6 (�6.5 to 5.2), >0.05

.8), <0.05 �4.8 (�13.6 to 9.0), >0.05

.1), <0.05 1.1 (�6.0 to 35.2), >0.05

boundary shift integral; CI, confidence interval; gBSI, generalized boundary shift



Table 4
Mean (SD) of hippocampal PBVC atrophy rates among STEPS-KN-BSI, pBSI1, pBSIg, and gBSI

STEPS-KN-BSI pBSI1 pBSIg gBSI

1.5 T
Controls (N ¼ 195) 1.12 (2.20) 0.69 (1.62) 0.40 (1.25) 0.87 (1.86)
AD (N ¼ 133) 4.88 (3.23) 2.91 (2.23) 1.63 (1.72) 3.90 (2.54)

3 T
Controls (N ¼ 39) 0.35 (2.27) 0.37 (2.30) 0.21 (1.53) 0.15 (1.86)
AD (N ¼ 24) 3.35 (3.08) 3.34 (3.1) 1.74 (2.35) 2.61 (2.46)

Comparison Difference in mean (95% CI), p-value

1.5 T 3T

STEPS-KN-BSI versus gBSI
Controls 0.249 (0.151e0.347), <0.001 0.207 (�0.378 to 0.452), <0.01
AD 0.988 (0.793e1.184), <0.001 0.737 (0.387e1.086), <0.001

pBSI1 versus gBSI
Controls �0.185 (�0.244 to �0.126), <0.001 0.228 (�0.026 to 0.482), <0.1
AD �0.987 (�1.099 to �0.875), <0.001 0.724 (0.363e1.086), <0.001

pBSIg versus gBSI
Controls �0.469 (�0.581 to �0.357), <0.001 �0.061 (�0.235 to 0.358), 0.679
AD �2.264 (�2.473 to �2.055), <0.001 �0.874 (�1.282 to �0.465), <0.001

Key: AD, Alzheimer’s disease; BSI, boundary shift integral; CI, confidence interval; gBSI, generalized boundary shift integral; PBVC, percentage brain volume change; SD,
standard deviation.
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higher sample sizes required for 1.5 T scans. Although pBSIg values
result in significantly higher sample sizes required for both groups.
5. Conclusions and discussion

This work presents a generalized BSI method for measuring
brain atrophy rates, and we show that it produces a modest but
significant reduction in sample sizes needed in clinical trials in
comparison with binarised implementation of the BSI. The gener-
alization of BSI is obtained using amulti-atlas propagation and label
fusion segmentation algorithm (Cardoso et al., 2013) with an
adaptive selection of a spatial window. The pXOR region is adap-
tively adjusted according to the boundary uncertainty, improving
boundary delineation. The smaller sample sizes obtained using gBSI
suggests an increased sensitivity to change through the use of the
probabilistic XOR region.

We also obtained smaller sample size estimation using KN-BSI in
our proposed pipeline when compared with a previous pipeline in
Leung et al. (2010b). This may be because of the use of extra N3
Table 5
Estimated sample sizes (95% CI) per arm (80% power at the 5% significance level to detect
using the STEPS-KN-BSI, pBSI1, pBSIg, and gBSI taking into account the hippocampal atro

STEPS-KN-BSI

1.5 T
Based on AD atrophy rates alone (N ¼ 133) 109 (81e150)
Controlling for normal aging (N ¼ 328) 184 (127e271)

3T
Based on AD atrophy rates alone (N ¼ 24) 212 (83e700)
Controlling for normal aging (N ¼ 63) 265 (92e1320)

Comparison Percentage difference

1.5 T

STEPS-KN-BSI versus gBSI
AD rates alone �2.7 (�13.4 to 9.7),
Controlling for aging �4.18 (�16.3 to 10.2)

pBSI1 versus gBSI
AD rates alone �27.8 (�36.5 to �19.
Controlling for aging �30.1 (�40.6 to �20.

pBSIg versus gBSI
AD rates alone �62.0 (�72.7 to �51.
Controlling for aging �64.2 (�76.8 to �51.

Key: AD, Alzheimer’s disease; CI, confidence interval; gBSI, generalized boundary shift in
inhomogeneity correction step and other factors in preprocessing
steps, for example, the degrees of freedoms used in the registration
(Leung et al., 2012). We plan to fully investigate the cause of the
improvement in future. It is worth noting that these sample sizes
are equivalent despite gBSI showing lower atrophy rates. As seen in
Figs. 4 and 5, the XOR region for both KN-BSI and gBSI span the
same extent of the boundary, but the gBSI has lower weight around
the edges reducing any atrophy observed in these areas. This also
likely reduces the effect of non-brain or non-hippocampal tissue
contributing to the atrophy measurement, thus also the reduced
standard deviations.

We have obtained similar sample sizes using manual-KN-BSI
and STEPS-KN-BSI, which provides further validation of the use of
STEPS segmentations in BSI. For prevention or predementia trials at
risk of developing AD (presymptomatic mutation carriers or
asymptomatic patients at risk for sporadic AD due to signs of am-
yloid deposition or carrying an APOE ε4 allele), likely thousands of
subjects will be required to observe decreased atrophy rates with
suitable statistical power. As a result, the implementation of a
25% reduction in disease progression) with and without controlling for normal aging
phy rates

pBSI1 pBSIg gBSI

147 (106e209) 281 (186e458) 106 (78e146)
253 (165e412) 495 (285e1002) 177 (121e271)

217 (83e769) 457 (153e3265) 222 (82e840)
276 (96e1310) 590 (168e9900) 250 (83e1329)

of sample size (95% CI)

3T

>0.05 4.8 (�20.9 to 31.8), >0.05
, >0.05 �5.8 (�31.7 to 26.2), >0.05

4), <0.05 2.4 (�23.9 to 34.5), >0.05
2), <0.05 �9.4 (�36.4 to 25.8), >0.05

7), <0.05 �51.3 (�76.3 to �20.3), <0.05
1), <0.05 �57.7 (�86.5 to �22.6), <0.05

tegral.
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reliable automatic segmentation into the atrophy pipeline will be
needed to avoid a large group ofmanual rates that would be needed
to meet the processing demands of the study.

The difference in sample size rates for STEPS-KN-BSI and gBSI
are significant for the brain area but not for the hippocampal area.
This shows that gBSI is more sensitive for detecting volume change
in structures thanks to the adaptively weighted probabilistic spatial
information incorporated in the XOR region (Manjón et al., 2010).

The presented pipeline is fully automated. STEPS remove the
manual intervention in the segmentation step. Probabilistic XOR
region reduces significantly the number of setting parameters
needed. We have obtained a repeatable, reproducible, and stan-
dardized image-analysis pipeline, that it is the most desirable for
clinical trials (Schuster, 2007).

The proposed work is most similar to a previous BSI method
using probabilistic brain segmentations (Ledig et al., 2012), where a
boundary shift region using the dilated union region and the eroded
intersection region, using fuzzy logic and parameterized thresholds.
A posteriori, they apply a spatial information function for getting
the final probabilistic mask, used to compute BSI, computing it as
the maximum between 0.5 and the probability segmentation mask
of each time point (Ledig et al., 2012). Instead, we used probabilistic
XOR adaptively weighted using the factor k without using binary
dilation and erosion and obtained directly from the combination of
both probability mask. gBSI appears to provide lower sample sizes
than the pBSI when using one of the suggestedweighting functions,
gh 0.5. When examining the pBSI regions in Fig. 5, we observe that
they do not cover the same extent as the KN-BSI or gBSI, likely the
cause for underestimating some of the regions. That the fuzzy
implementation proposed by pBSI underestimates atrophy rates
compared with KN-BSI is consistent with results presented by Ledig
et al. (2012).

However, there are important differences in the intensity
manipulation between pBSI and gBSI pipelines that directly affect
the results. BSI is a biomarker that needs consistent image quality
between time points to avoid possible bias. pBSI used a fixed single
intensity window for measuring atrophy in hippocampus, without
correcting the residual intensity inhomogeneity-derived differ-
ences between the baseline and the repeat images. For fixing this
issue in our pipelines, we applied symmetric differential bias
correction (Lewis and Fox, 2004). Moreover, we took into account
that different images acquired from different sites may have
different tissue contrasts and signal-to-noise ratios, and this means
that each one has its optimal BSI intensity window. Ideally, its
choice should be automated and unbiased (Leung et al., 2010b).
Finally, using a single intensity window pBSI mainly captured the
atrophy produced in the CSF-hippocampal border, ignoring most of
the white matter-hippocampal border. To account for atrophy at
this border, we applied a double intensity window (Hobbs et al.,
2009; Leung et al., 2010a). These are the source of the difference
between Ledig et al. (2012) and presented atrophy rates and sample
sizes in hippocampus.

Several studies have previously compared BSI with related
methods. Smith et al. (2007) obtained that SIENA and BSI has a
good correlation and established that SIENA gives 20% larger at-
rophy values. Later studies found a consistent overestimation of
SIENA with respect to BSI: 29% times in Camara et al. (2008) or
115% times in Sharma et al. (2010). Recently, Duran-Dubief et al.
(2012) assessed the robustness of 7 different segmentation-
based atrophy pipelines over multiple sclerosis patients. Holland
et al. (2012) did an unbiased comparison of sample size esti-
mates between different techniques (QUARC, TBM, FS, and BSI),
where the best whole brain bias-corrected sample size estimation
for AD value was obtained by KN-BSI, 75 (CI, 58e104), which is
improved by gBSI in this work.
There are some potential caveats that need to be taken into
account in this article. BSI, like the most modern atrophy bio-
markers, is already quite robust, and most improvements will not
have a dramatic effect. As there was less benefit on smaller regions
like the hippocampus, further work will also assess the influence of
both the gain factor k and the intensity normalization strategy in
the atrophy estimates and how these might be optimized
depending on the region of interest.
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