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Multiple sclerosis lesions influence the process of image analysis, leading to tissue segmentation problems and
biased morphometric estimates. Existing techniques try to reduce this bias by filling all lesions as normal-
appearing white matter on T1-weighted images, considering each time-point separately. However, due to lesion
segmentation errors and the presence of structures adjacent to the lesions, such as the ventricles and deep grey
matter nuclei, filling all lesions with white matter-like intensities introduces errors and artefacts. In this paper,
we present a novel lesion filling strategy inspired by in-painting techniques used in computer graphics applica-
tions for image completion. The proposed technique uses a five-dimensional (5D), patch-based (multi-modality
andmulti-time-point), Non-Local Means algorithm that fills lesionswith themost plausible texture.We demon-
strate that this strategy introduces less bias, fewer artefacts and spurious edges than the current, publicly avail-
able techniques. The proposed method is modality-agnostic and can be applied to multiple time-points
simultaneously. In addition, it preserves anatomical structures and signal-to-noise characteristics even when
the lesions are neighbouring grey matter or cerebrospinal fluid, and avoids excess of blurring or rasterisation
due to the choice of the segmentation plane, shape of the lesions, and their size and/or location.
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Introduction

Multiple sclerosis (MS) is an immune-mediated demyelinating dis-
ease that affects both white matter (WM) and grey matter (GM). It is
characterised pathologically by areas of inflammation, demyelination,
axonal loss and gliosis scattered throughout the central nervous system.
These pathological processes affect several quantitative MRI indices,
and therefore can be indirectly measured with advanced imaging
methods. Among these, tissue volume and, in particular, brain/tissue-
specific atrophy, are very sensitive to subtle changes over a scale of a
few months, making in vivo MRI measurements of these indices very
appealing for studying the mechanisms of disease and for clinical tri-
als. White matter plaques are relatively easy to detect using conven-
tional MRI techniques, whereas grey matter lesions can be observed
using specialised sequences, such as double inversion recovery (DIR)
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(Geurts et al., 2012) or phase sensitive inversion recovery (PSIR)
(Sethi et al., 2012). MS plaques appear as areas of low-signal intensi-
ty and high-signal intensity compared with normal-appearing white
matter (NAWM) on T1-weighted and T2-weighted sequences re-
spectively. On the other hand, active lesions exhibit hyper-intense
signals on gadolinium-enhanced scans (Lladó et al., 2012). Lesions
and atrophy are two interconnected aspects of the disease, linked
to different disease mechanisms, and both are extremely important
for MS studies.

From an image processing perspective, MS lesions influence tissue
segmentation, resulting in the misclassification of the GM and the
WM. It has been suggested that MS lesions may affect the estimation
of segmentation parameters, resulting in a shift of tissue boundaries
(Chard et al., 2010), thus influencing the subsequent morphometric
studies, including atrophy measurements. Thus, there is a clear need
to reduce the negative impact that MS lesions may have on image anal-
ysis in order to improve tissue segmentation and longitudinal registra-
tion, increasing sensitivity to subtle changes, reducing the time-
intervals and sample sizes needed for longitudinal studies and treat-
ment trials.
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Various techniques have been developed in recent years based on
the concept of in-painting T1-weighted MRI images: Sdika and
Pelletier (2008), Chard et al. (2010), Battaglini et al. (2012), Magon
et al. (2014), Valverde et al. (2014), and Guizard et al. (2015).

In short, the process of lesion in-painting is based on filling a WM le-
sion with synthetic estimates of WM-like image intensities. The process
of WM lesion in-painting is expected to reduce the overall algorithmic
bias. Sdika andPelletier (2008) presented threedifferent in-painting algo-
rithms. The first, denoted basic in-painting and inspired by Telea (2004),
consists of filling the lesion ROI in an inner-radial manner using
a Gaussian kernel average 3×3×3 of the neighbouring intensities. The
second, called localwhitematter in-painting (LWMI), uses apriori informa-
tion obtained from an image segmentation technique to iteratively fill the
border of the lesions using aGaussian kernel. Finally, the globalwhitemat-
ter in-painting (GWMI) method fills the MS lesions with the mean inten-
sity of the normalWMover thewhole brain, meaning that all lesions will
have the same intensity regardless of their neighbourhood.

Recently, Chard et al. (2010) developed the LEAP (LEsion Automated
Preprocessing) technique with the aim of filling lesions as normal WM,
reproducing the WM noise characteristics and avoiding operator inter-
vention. This method starts by skull stripping the brain and applying a
non-uniformity intensity correction algorithm. The normal tissue inten-
sity distribution is modelled numerically as the sum of four Gaussian
components representing GM, WM, CSF, and partial-volume voxels. Fi-
nally, the lesion ROI is filled with random samples from a Gaussian dis-
tribution with mean equal to the most probable WM intensity and a
standard deviation equal to the WM full-width half maximum noise
characteristics. This method is available at: http://www.nmrgroup.ion.
ucl.ac.uk/. Valverde et al. (2014) and Magon et al. (2014) have then in-
troduced variations to the LEAP method. Valverde et al. (2014) sug-
gested to fill the volume in a slice-wise manner, whilst Magon et al.
(2014) filled the lesions using the mean intensity of two voxel expand-
ed neighbouring over the normal-appearing WM.

Similarly, Battaglini et al. (2012) presented amethod based on replac-
ing the lesion voxel intensities with values that are randomly sampled
from an intensity distribution that is measured from the surrounding
WM and GM voxels. The surrounding normal-appearing tissue volume
is taken as the extra volume obtained by dilating the lesion ROI twice. Le-
sions are thenfilledwith samples taken from the neighbouring histogram
using a uniform random value passed through an interpolated version of
the empirical cumulative distribution function of the neighbouring histo-
gram. Both GM and WM voxels are included in the neighbouring histo-
gram in order to represent the surrounding tissue and allow the filled
lesions to best visually blend into its environment. This method is avail-
able as part of FSL (Jenkinson et al., 2012) at http://fsl.fmrib.ox.ac.uk.

Regardless of their approach, all these algorithms have been restricted
to images of a specificMRImodality (e.g. T1-weighted scans), and require
accurate lesion segmentation, especially when lesions are periventricular
orwhen themethods are based on filling the lesionswith values from the
surrounding areas. They can also create shape gradients around the lesion
ROIs, and are prone to errors coming from estimating WM distribution
properties.

More recently, Guizard et al. (2013, 2015) calculated the most simi-
lar patches using only the surrounding regions after pre-filling the le-
sions with the median of the image intensities of the surrounding of
healthy tissues (Guizard et al., 2013). The same authors later introduced
an hierarchical, concentric filling strategy, where distances between
patches are computed over the full patch, the filling process is repeated
with different weighting values and at multiple increasing resolutions
(Guizard et al., 2015).

In the field of computer graphics, structurally aware in-painting al-
gorithms used for scratch/object/text removal and photo restoration
are common,withmany of these algorithms permitting a user to simply
erase an unwanted portion of an image without any prior knowledge
about its composition. These techniques attempt to fill regions by syn-
thesising plausible texture matches from the remainder of the image
(Criminisi et al., 2003; Komodakis and Tziritas, 2007; Barnes et al.,
2010). In doing so these algorithms are completely agnostic to the struc-
ture of the input image.

The most successful techniques for in-painting in computer
graphics, here denoted as exemplar-based methods, attempt to fill the
unknown ROI by simply copying content from the observed part of
the images (Komodakis and Tziritas, 2007), under some constraints.
This class of methods commonly divides the image into a large number
of sub-images, or patches, followed by either a patch-search method
Criminisi et al. (2003), or the use of the Non-Local Means algorithm
(Buades et al., 2005). Finally, the intensities can be synthesised using ei-
ther pixel values or patch-based textures from the most similar patch.

In this work, we formulate a multi-time-point, task-specific, patch-
search algorithm for the purpose of filling MS lesions. This novel work
offers three main advantages: first, due to its general formulation, the
proposed algorithm should in theory be able to inpaint most types of
MR images with repetitive patterns. Secondly, due to its contextual na-
ture, the proposed algorithm is also more robust to over-segmentation
of the lesion ROIs, thus reducing accuracy requirements whenmanually
or automatically defining the in-painting region of interest. Thirdly, and
finally, it allowsfilling lesions at different time-points (as in longitudinal
studies) at once taking advantage of the information of the lesion
evolution.

Material and methods

The proposed lesion filling technique can be described in threemain
steps: (1) determining the patch with the most similar neighbourhood
structure, (2) synthesising the intensity pattern from the best patch,
followed by (3) a buffing step through the application of a minimal
kernel-based convolution over the filled region.

First, we assume thatwe have a greyscale-valued 5Dvolume I⁎, com-
posed of n different modalities or MRI sequences, over t time points,
with each individual 3D volume being of size X×Y×Z. Each time point
and modality has an associated lesion mask, here denoted as L.

Let the filled image I be defined as I(p)= I⁎(p) ∀p∉L, and as IðpÞ¼
FðpÞ∀p ∈L , where p denotes the voxel location (x,y,z,n,t) in the image I
and FðpÞ is the function that synthesises the intensity of voxel p. We de-
fineΩ as a search region of sizeW3 voxels around voxel p (whereW de-
notes the spatial search region size in voxels in each spatial direction).
Within the regionΩ, we define a 5D target patch T(p) of size ntw3 voxels
(where w denotes the patch size in voxels), centred at a voxel p, and a
search patch S(q) of size ntw3 voxels, centred in q, with q∈Ω and q∉L.

Given w and W, we propose to replace (or fill) the voxel intensity
I⁎(p) with the intensity I⁎(q) if S(q) is the most similar patch to T(p),
under the constraint that q is within the search region Ω, outside the

lesion region L and that q≠p. Formally, a temporary estimate ÎðpÞ for
all p ∈L can be generated by finding ÎðpÞ ¼ Iðq̂Þ with:

q̂ ¼ argmin
∀q∈Ωj q≠pð Þ∧ q∉Lð Þ

D T pð Þ; S qð Þð Þ ð1Þ

where the distance D between two patches T and S is equal to

D T pð Þ; S qð Þð Þ ¼
X

∀i∈ ntw3f g fT pþið Þ;S qþið Þg∉Lj I pþ ið Þ−I qþ ið Þð Þ2

κc ð2Þ

Here, κ is the cardinality of the set i∈{ntw3}|{T(p+ i),S(q+ i)}∉L, i.e.
the number of voxels within the patches T(p) and S(q) that are not in
the lesion region. Note that when cN1, the denominator κc favours
patches with more information. A further hard constraint can be added
by defining α as the minimum required percentage of non-lesion voxels
in a patch. This hard constraint can be formally defined as κNαntw3, i.e.
the cardinality of the set ∀ i∈{ntw3}|{T(p+ i),S(q+ i)}∉ L has to be
more than α% of the patch size. If this constraint is satisfied, then p is
marked as solve and is removed from the set L, otherwise, p remains in

http://www.nmrgroup.ion.ucl.ac.uk
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L. This process is repeated untilL¼∅, i.e., every voxel p initially inLhas an

estimate ÎðpÞ. The values of p are accessed in an inwards manner depen-
dent on the distance between p and the boundary of the lesion, meaning
that the lesion is inpainted radially in an inwards direction as depicted in
Fig. 1.

Finally, when L¼∅, FðpÞ can then be estimated by buffing the esti-

mates of ÎðpÞusing a convolution operation F¼C�̂I, whereC is aminimal
6-neighbourhood clique (cross-shape) kernel with its centre voxel set
to 1 and all other voxels set to K. The kernel C is then normalised so
that the kernel density sums to 1. This buffing step increases the
smoothness of the inpainted region, thus removing of spurious edges
that might affect further analysis pipelines, e.g. atrophy estimation.

The presented algorithmhas been included as standalone tool in the
software package NiftySeg (niftyseg.sf.net) and asweb-service at http://
cmictig.cs.ucl.ac.uk/niftyweb.

Multi-time-point filling

For themulti-time-point filling, we first calculate the transformation
fromeach time-point to the average position of all time-points using the
NiftyReg software package (niftyreg.sf.net).We performall the pairwise
symmetric affine registrations to obtain transformation matrices be-
tween each pair of images (Leung et al., 2012). For each image (i), we
compute the geometric log mean of pairwise affine transformations Th
(Alexa, 2002) as follows:

Th;i ¼ exp
log Ti;1

� �þ ::: log Ti;i
� �

:::þ log Ti;N
� �

N
; i∈ 1 :::Nf g ð3Þ

The images and lesion masks are then transformed into an intra-
modality/time-point average space. All individual volumes are finally
combined into a single 5D volume that contains all available multi-
modal and longitudinal information, and inpainted. Note that as an op-
timal q is found for each 5D patch centred at p, the same q location will
be used to fill all the different modalities/time-points at p. This allows
for a better joint tissue synthesiswithmore realistic intensities between
time points and modalities than if performed individually, thus
resulting in more realistic atrophy values. Moreover, themethod allows
for different lesion masks at each time-point following the normal be-
haviour of MS lesions that can change with time.

Parameter settings

All our experiments use the following un-tuned, empirically deter-
mined parameters. T and S patches use an adaptive patch size defined
as the maximum Euclidean distance over all time-point images of
Fig. 1.Algorithmscheme that illustrates twodifferent iterations,with the voxels in orange denot
the search patch S, centred at q, within Ω, until it finds the location q̂ where Sðq̂Þ and T(p) are
each r lesion voxel to the closest non-lesion voxel s. Formally:

w rð Þr∈L ¼ argmax
∀i∈I

dist r; ið Þð Þ þ 1 ð4Þ

dist r; ið Þ ¼ argmin
s∉L∧s∈I�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−sð Þ2

q� �
ð5Þ

The search regionΩ is defined asW(r) = 4w(r). The minimum car-
dinality of a set of voxels used for computing the patch distance has to
be superior to 50%, i.e. α=0.5. Finally, the parameters K and c are de-
fined as 0.1 and 2 respectively.

Using priors

Our method can work without any additional priors other than the
mask of the regions to be filled. However, we have included an option
to add priors to identify valid areas for searching suitable voxels q to
fill p (see Fig. 2). The voxels outside the priormask are considered as un-
healthy voxels and included in the L set of excluded voxels. This extra
prior mask is used for defining the adaptive patch size (Eq. (4)) and
for getting the voxels that can be used to synthesise the information
(Eq. (1)). The extra prior mask is not considered in the computation of
the distance between two patches (Eq. (2)).

Data

To test the performance of the different inpainting methods, three
different datasets have been used for different purposes.

The first dataset comes from the public database BrainWeb (http://
www.bic.mni.mcgill.ca/brainweb/) and it is composed of imageswith dif-
ferent contrast (T1, T2 and PD) using the “mild”, “medium” and “severe”
MS lesion phantom. We will refer to this dataset as BW (BrainWeb).

The second dataset is from 8 healthy, adult volunteers who were re-
cruited for this study to test the algorithm using synthetic lesion genera-
tion (age range: 25–45 years). Each subject was scanned 3 times in a
month, resulting in a total of 24 scans. This dataset was collected using
a 3 Tesla Philips Achieva MRI system (Philips Medical Systems, Best,
Netherlands) with an 8-channel head coil resulting in T1-weighted 3D-
TFE acquisitions (with an inversion recovery magnetisation preparation)
in the sagittal planewith the following imaging parameters: TR=6.9ms;
TE=3.1ms; TI=867 ms; flip angleα=8; FOV=256×256mm; voxel
size=1×1×1mm;NEX=1; 180 contiguous slices; scanning time 6:30
min. We will refer to this dataset as HV (Healthy Volunteers).

The third dataset is composed of 52 patients with secondary, pro-
gressive MS (age range: 30-61 years) and is used for the quantitative
analysis. Each subject in this group was scanned at baseline and at
24 months, resulting in a total of 104 scans. After a quality control 11
subjects were discarded due to different image artefacts, resulting in a
ing the ones respecting the hard constraint κNαntw3. In short, the proposedmethodmoves
the most similar.

http://cmictig.cs.ucl.ac.uk/niftyweb
http://cmictig.cs.ucl.ac.uk/niftyweb
http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/
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Fig. 2. Detail of the ventricles of a healthy subject. From left to right, original image without lesions (a). Synthetic lesion mask using the registered lesion mask from the “severe” MS
phantom from the BrainWeb dataset (b). Brain mask obtained using STEPS overlaying synthetic lesion image (c). Euclidean distance from each voxel to the closest healthy voxel without
defining priors (d). Euclidean distance to the closest healthy voxel using as prior mask the STEPS mask (e). Filling results without and with priors (f-g).
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final dataset of 41 subjects. The MRI data was collected using a single
1.5 Tesla MRI scanner (General Electric, Milwaukee, WI, USA). Quality
control and manual lesion segmentation were completed by two
trained raters. Appropriate quality assurance procedures, involving reg-
ular scanning of control subjects with no known neurological deficit
and phantoms, were undertaken in keeping with departmental policy.
The following sequences were acquired: 2D T1 W Spin Echo (SE)
(TE = 15ms,TR = 550ms, in-plane pixel spacing: 0.9375×0.9375
mm, out-of-plane: 3 mm), T2 W Dual Fast SE (TE = 20 ms and 80 ms,
TR = 2500ms, voxel size: 0.9375×0.9375×3 mm) and 3D T1WGE
(TE = 5 ms, TR = 15 ms, TI = 450ms, 0.976×0.976×1.5 mm). This
dataset is a subset of placebo group of the Lamotrigine Trial (Kapoor
et al., 2010). We will refer to this dataset as MSLA (MS Lamotrigine).

For the second and third datasets, written informed consentwas ob-
tained from all participants and the studywas approved by our local re-
search ethics committee.

Synthetic lesion generation

Synthetic lesionswere generated and added to the HV data acquired
specifically for this study as follows (see Figs. 3 and 4):

• HV brain tissue masks were extracted using STEPS (Cardoso et al.,
2013).

• T1 BW imageswere firstly affine and then non-rigid registered to each
scan of the HV using NiftyReg package.

• The binary “severe” lesion mask from BWwas resampled to each HV
native space.

• The resampled lesionmaskwas constrained by the STEPS'mask to en-
sure that all the lesions were inside the brain.

• We generated a normalised Gaussian noise image, whichwasmasked
with the resampled lesion mask and multiplied by 0.5, obtaining an
Fig. 3. Schema that illustrates the followed main steps to gene
intensity profile mask. This is just for a visual propose, because all
the inpainting methods used in this paper not consider the values in-
side the mask.

• Finally, the T1 image of HV was multiplied on a voxel-by-voxel basis
by the intensity profile obtained in the previous step to reintroduce
spatial variation in the tissue signal intensities and simulate an MS
lesion.

Quantitative analysis' methods

For quantitatively compare different lesion filling approaches, we
used 5 measures to assess different aspects of a filling method.

Tissue volume errors
We estimated tissue volume errors (Chard et al., 2010) using the

mean error (ME) for different segmented-classes. Additionally,we com-
puted the mean absolute error (MAE) to show how close two volumes
are. These measures show the influence of each technique over a seg-
mentation method showing how we are changing the tissue classifica-
tion. We computed the GM, WM and CSF volume using GIF (Cardoso
et al., 2012).

ME ¼ 100
VT−V0

V0
ð6Þ

where V0 is the tissue volume before adding synthetic lesions and VT is
the obtained volume after filling the lesions.

Tissue homogeneity
We computed the normalised entropy inside the filled lesions. It

provides a measure of the tissue homogeneity inside the filled lesions,
rated the synthetic MS lesions over our healthy subjects.

http://sourceforge.net/projects/niftyreg/NiftyReg
Image of &INS id=
Image of Fig. 3


Fig. 4. Lesion filling results over a control subject generating synthetic lesions using the registered lesionmask from the “severe”MSphantom from the BrainWebdataset. From left to right,
the original T1 image, the lesion mask from BrainWeb phantom registered over T1 image after applying the STEPS mask, the generated synthetic lesions, and the fill-lesion results using
each method. Each row shows the coronal, axial and sagittal view respectively.
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where small entropy means that all lesions are filled with clustered in-
tensity values.

Synthetic tissue integrity
We estimated the gradient magnitude at the edge of the filled le-

sions |∇ I |. It provides information on the presence of discontinuities at
the boundary of the lesion, with small values meaning a soft transition
between real and synthetic intensities and high values show the pres-
ence of spurious image gradients at the edge of the region.

Synthesisation error
Weused themean square error (MSE) to assess the error in the syn-

thesis process. MSE measures the difference between the synthetic
values and the real values within the synthetic lesion regions. Methods,
that obtaining a smallerMSE,mean that they fill lesionswithmore real-
istic synthetic intensities.
Fig. 5. The coronal, axial and zoomed views of the original T1 image of a MS patient and th
methodology. Note the introduction of WM-like intensity in the mis-segmented caudate regio
Longitudinal filling
We compared the results of estimating longitudinal atrophy with the

generalised Boundary Shift Integral (GBSI) pipeline (Prados et al., 2014a,
b). GBSI determines atrophy to be localisedwith areas of intensity chang-
es in the vicinity of the brain boundaries, as determined by the probabilis-
tic segmentations of the aligned baseline and repeat scans (Manjón et al.,
2010). To perform the alignment between the two time-points, a sym-
metric and inverse-consistent registration to the middle space using 12
DOF registration was performed. This technique ensures that findings
are not biased due to the registration process. The GBSI intensity window
is automatically chosen based on the imaging properties of each of the tis-
sues of interest (Leung et al., 2012). A non-binary XOR region-of-interest
is adaptively estimated from probabilistic brain segmentations of both
scans, in order to better localise and capture the brain atrophy. Mean
and standard deviation of annualised percentage of brain volume change
(PBVC) were calculated using each filling method. We estimated sample
sizes estimates, along with 95% confidence intervals (CI), for whole
e lesions mask (LROI), followed by the results with FSL, LEAP, NLMI and the proposed
n (1st zoomed view) using the FSL and LEAP methods.

Image of &INS id=
Image of Fig. 4


Fig. 6. The coronal, axial and zoomed views of the original T1 image of a MS patient and the dilated lesions mask (DROI), followed by the results with FSL, LEAP, NLMI and the proposed
methodology. Note the introduction of noisy samples using the FSLmethod, sharp contrast boundaries with the LEAPmethod and, the artificial low SNR and blurred boundaries obtained
by NLMI method.
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brain annualised PBVC using a widely accepted formula for these studies
(Fox et al., 2000), which provides for 80% power at the 95% significance
level to detect a 25% reduction in disease progression compared to the
ideal case of 0 atrophy. We obtained bias-corrected bootstrap CIs
(10,000 samples) for each of the estimated sample sizes.

Statistical analyses were performed using Stata version 10 (College
Station, Texas, US).

Results

Three lesion filling algorithms were used for comparison purposes
using T1-weighted images: the lesion automated preprocessingmethod
(Chard et al., 2010), here referred to as LEAP; the filling method imple-
mented in FSL (Battaglini et al., 2012), here referred to as FSL, and the
non-local means inpaintingmethod (Guizard et al., 2015), here referred
Fig. 7. Lesion filling results on different modalities using the “severe”MSphantom from the Brai
(c-d), and the PD and the lesion filled PD (e-f). Second row, the lesionsmask over each differen
and f).
to as NLMI. Public available versions were used for LEAP and FSL. NLMI
was reimplemented in-house as the method is not publically available.
Qualitative analysis

In this evaluation, we compare the different methods for filling
the lesions of an MS patient in two situations: with L defined as the
manually-segmented lesion mask (LROI), and with a dilated version of
the same mask (DROI). Figs. 5 and 6 show the results obtained using
the original mask and the dilated mask respectively.

Furthermore, the proposedmethodwas also applied to images from
different modalities from BWdataset (see Fig. 7), demonstrating its im-
mediate generalisation and agnosticism to the type of image contrast.
The same parameters were used for lesion filling all modalities.
nWeb dataset. First row, the T1 and the lesion filled T1 (a-b), the T2 and the lesion filled T2
tmodality image (a, c and e), and the ground truth for each differentmodality image (b, d

Image of &INS id=
Image of Fig. 6


Table 1
Results from the quantitative analysis, with the mean (std) and a * when the pair t-test (respect to proposedmethod using priors) got pb0.05 over the 24 images for the healthy subjects
group. First row is the lesion region entropy after filling. Second row is the gradientmagnitude |∇I| respect the neighbourhood. The third row shows themean square error (MSE) in com-
parisonwith the real tissue value. Rows 4–6 show themean error (ME), the paired t-tests are between the obtained volumes for each tissue respect to the obtained by the proposedmeth-
od using priors. Finally, rows 7–9 show the mean absolute error (MAE) for each tissue segmentation.

FSL LEAP NLMI Proposed Prop. with priors

Entropy 0.200 (0.027)* 0.098 (0.015)* 0.141 (0.022)* 0.165 (0.026) 0.164 (0.026)
|∇I∥ 0.040 (0.009)* 0.060 (0.012)* 0.045 (0.009)* 0.042 (0.009)* 0.043 (0.009)
MSE 0.146 (0.085)* 0.403 (0.297)* 0.011 (0.011)* 0.021 (0.020)* 0.006 (0.005)
ME(GM) 0.516 (0.149)* 0.127 (0.076)* 1.064 (0.445)* -0.057 (0.049)* -0.035 (0.061)
ME(WM) -0.392 (0.098)* 0.052 (0.072)* -0.146 (0.244) * 0.015 (0.056) 0.010 (0.059)
ME(CSF) 0.055 (0.171) -0.395 (0.261)* 0.792 (0.365)* 0.056 (0.162)* 0.005 (0.183)
MAE(GM) 0.516 (0.149)* 0.130 (0.071)* 1.064 (0.445)* 0.064 (0.039) 0.057 (0.039)
MAE(WM) 0.392 (0.098)* 0.075 (0.045)* 0.200 (0.199)* 0.046 (0.034) 0.044 (0.040)
MAE(CSF) 0.153 (0.089) 0.395 (0.261)* 0.792 (0.365) 0.132 (0.107) 0.147 (0.105)
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Quantitative analysis

In this section, we quantitatively assessed which method produced
the most realistic patch. In order to do so, we applied our synthetic le-
sion generationmethod over our HVdataset.We computed the normal-
ised entropy inside the filled lesions and the gradient magnitude at the
edge of thefilled lesions (|∇ I |).Weused themean square error (MSE) to
measure the difference between the synthetic values and the real values
within the ROI region, with a smaller MSE meaning more realistic syn-
thetic intensities in thefilled ROI. Also, we computed the different tissue
volume changes. All results are presented in Table 1.

Furthermore, we tested the different methods over MSLA dataset.
We filled all the images and computed the atrophy between time-
points using GBSI. Tables 2 and 3 show the results obtained in terms
of atrophy and sample size respectively.
Discussion

Our algorithm has been tested in three different scenarios: public
database, healthy dataset and MS dataset.

In thefirst scenario, we have evaluated visually the quality of the dif-
ferent methods. Figs. 5 and 6 show that the proposed method not only
preserves better the boundaries of the underlying neighbouring struc-
tures (ventricles and WM/GM boundaries), but also reduces artefacts
and spurious rasterisation due to lesion shape, size and position and
due to the choice of imaging plane for manual segmentation. Further-
more, as the proposed method is context aware, it is also able to cope
with situations when the human rater erroneously segments a non-
pathological region of interest, e.g. the first zoomed region in both
Figs. 5 and 6 shows that the caudate nucleus was mislabelled as an MS
lesion. This structure was correctly preserved using the proposed tech-
nique but not using both the LEAP and FSL techniques.
Table 2
First row shows the mean and standard deviation of the whole brain PBVC. Below, a comparis
shown.

N=41 FSL LEAP NL

Mean (Std.) 0.956 (0.540) 0.910 (0.514) 0.9

Difference in mean (95% CI), p-value

FSL vs LEAP
FSL vs NLMI
FSL vs Prop. non-Longitudinal
LEAP vs NLMI
LEAP vs Prop. non-Longitudinal
NLMI vs Prop. non-Longitudinal
FSL vs Prop. Longitudinal
LEAP vs Prop. Longitudinal
NMLI vs Prop. Longitudinal
P. non-Longitudinal vs Prop. Longitudinal
In Fig. 7, the generalisability and agnosticism to the type of tissue
contrast is demonstrated. T1-, T2- and PD-weighted images are filled
successfully using the same parameters for all of them.

The quantitative evaluationwas performed simulating lesions over a
healthy dataset. The results demonstrate that the proposed method
using priors fills the lesionswith themost similar intensity to the previ-
ous one. The obtained entropy, gradient and MSE values show that our
method is generating themost similar filling intensities to the expected
normal tissue with statistically significant difference respect the other
methods (see Table 1). The FSL method obtains slightly better (lower)
gradient values across the lesion boundaries due to the fact that it fills
the lesion boundary with samples taken from the surrounding histo-
gram. The lower entropy obtained by LEAP is because it fills all the
lesions with the same intensity (mean WM intensity) adding a small
Gaussian error, resulting in the fact that the synthetic values are close
to each other having a smaller variability.

ME and MAE values show that FSL and NLMI methods tend to ex-
pand the GM volumes. LEAP tends to reduce CSF volume whilst NLMI
expands it. The proposedmethod without priors tends to generate syn-
thetic CSF-like intensities in overly large periventricular lesions. These
biases at tissue boundaries affect the atrophy estimates as computed
using GBSI.

In terms of tissue classification LEAP fills the lesions using class-
specific intensities, with the consequence of losing CSF volume whilst
increasing the GM and WM volumes. This is caused by lesions that are
close to the ventricle boundaries that are classified as WM or GM rater
than CSF, after filling them using LEAP. This results in an atrophy
overestimation.

The newmethods ME and MAE values show that it tends to slightly
overestimate CSF tissue, although this bias is less than with the other
techniques. This is happening at the tissue-ventricles interface and
could result in a fictitious change of ventricles boundaries at different
time-points that means an atrophy overestimation. However, after
on between methods is done, the difference in mean with the 95% CI and paired t-test is

MI Prop. non-Longitudinal Prop. Longitudinal

28 (0.540) 0.921 (0.509) 0.934 (0.512)

0.045 (-0.002 to 0.093), p=0.06
0.028 (-0.015 to 0.071), p=0.19
0.035 (0.005 to 0.065), p=0.06
-0.017 (-0.059 to 0.025), p=0.42
-0.010 (-0.053 to 0.032), p=0.62
0.007 (-0.044 to 0.031), p=0.72
0.021 (-0.049 to 0.092), p=0.54
-0.024 (-0.073 to 0.025), p=0.33
-0.007 (-0.070 to 0.056), p=0.82
-0.013 (-0.081 to 0.054), p=0.69



Table 3
Estimated sample sizes (95% CI) in comparison to the ideal case of no-atrophy usingwhole brain annualised PBVC (80%power at the 5% significance level to detect 25% reduction in disease
progression). Below, it is shown the percentage difference of sample size with the 95% CI and paired t-test between methods.

N=41 FSL LEAP NLMI Prop. non-Longitudinal Prop. Longitudinal

Sample size 80 (52 to 125) 80 (50 to 129) 85 (54 to 134) 77 (51 to 117) 75 (46 to 125)

Percentage difference in mean (95% CI), p-value

FSL vs LEAP -0.2 (-22.7 to 22.2), p=0.98
FSL vs NLMI 6.3 (-14.0 to 26.8), p=0.53
FSL vs Prop. non-Longitudinal -4.0 (-15.9 to 7.9), p=0.51
LEAP vs NLMI 6.6 (-12.0 to 25.3), p=0.48
LEAP vs Prop. non-Longitudinal -3.8 (-22.7 to 15.1), p=0.69
NLMI vs Prop. non-Longitudinal -9.8 (-26.0 to 6.4), p=0.23
FSL vs Prop. Longitudinal -5.6 (-38.4 to 27.0), p=0.74
LEAP vs Prop. Longitudinal -5.4 (-31.8 to 21.9), p=0.69
NMLI vs Prop. Longitudinal -11.3 (-34.8 to 12.2), p=0.34
P. non-Longitudinal vs Prop. Longitudinal -5.9 (-33.6 to 21.7), p=0.67
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visual inspection, we have seen that this happens with the bigger
periventricular lesion loads. The proposed solution to this problem, i.e.
the introduction of priors and the longitudinal filling, helps to fill the le-
sions appropriately with minimum spurious synthetic CSF.

The longitudinal analysis, that we performed using the MS dataset,
demonstrates the gains obtained by filling lesions longitudinally by tak-
ing into account the temporal evolution of lesions. The smaller sample
size required by our longitudinal inpainting method (see Table 3)
shows that it is better to apply a longitudinal image synthesis method
than filling each time-point separately, simulating the real tissue chang-
es between time-points. New and changing lesions are filled more con-
sistently thanks to the additional information provided by the other
time points where the tissue might not have been corrupted. Nonethe-
less, differences between the longitudinal and non-longitudinal
methods were not found to be significant in our study, possibly due to
the small test dataset (N=41). However, it should be noted that filling
each time-point separately, as in the non-longitudinal approach, can
generate synthetic atrophy if the patches selected in different time-
points to fill the same lesion are sourced from different brain areas.
This can lead to darker intensity patches being used in some time-
points versus lighter ones in others, producing intensity variations that
can resemble atrophy. This limitation is avoided in the longitudinal
approach.

Furthermore, the proposed method is not only less affected by the
lack of contrast between tissues, as it fills the lesion ROI with the most
similar non-local patches and not according to a class-specific intensity
model, but at the same time more robust to the location of the lesions,
i.e. previous algorithms have problems with lesions located close to
non white matter regions. Filling lesions with intensity values from
the surrounding areas could be a problem from histological point-of-
view, but not from image synthesis point-of-view, since the synthesis
processmakes that the affected area have values similar to the expected
look like and the final aim is that all the posterior image processing
methods get the expected results, as we were using healthy brains.

The NL-Means models typically use a weighted average of the best-
matched patches, rather than using the best match itself. In our testing,
we found that weighted averaging can introduce blurring and an artifi-
cially low SNR in the filled areas (see Figs. 4, 5 and 6 for NLMI vs. Pro-
posed method), making it more difficult to estimate longitudinal
tissue differences as demonstrated in Tables 2 and 3.

Lastly, manual lesion editing is still the gold standard for lesion
masking inMS, with the accuracy of the rater and the choice of segmen-
tation plane being sources of bias. By exploiting contextual information,
the proposed algorithm has been shown to be more robust to lesion
over-segmentation than previously published techniques. Thus, it
would be interesting to see if the proposed method can be used in con-
junction with a highly sensitive automatic lesion detection methodolo-
gy, thus removing rater bias from the analysis process.
Finally, although theNLMImethod (Guizard et al., 2015) also uses an
NL-means strategy similar to the proposed method, the two algorithms
are significantly different. The NLMI method always uses the whole
patch, whilst the method presented here uses only non-lesion voxels
within a size-adaptive patch. The concentric filling strategy of the pro-
posed method also allows for previously inpainted voxels to contribute
towards the patch distance of inner voxels. Conversely, rather than fill-
ing lesions concentrically, NLMI fills the image hierarchically at different
resolutions andwith different smoothing factors to enable the propaga-
tion of intensities over longer distances. Finally, NLMI inpaints multiple
time points independently whilst the proposed method does so jointly.

Conclusion

In this paper, we propose a new and robust multi-modality and
multi-time-point lesion filling technique that relies on a non-local
patch match strategy. The method shows improved results compared
to previously published publicly available methods. We have demon-
strated that the presented method is able to fill the lesions with the
most plausible values in different tissue contrast and in multi-time-
points at the same time. Future work will explore a multi-subject
patch search technique and a model parameter optimisation.
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