23 research outputs found

    Understanding the age spectrum of respiratory syncytial virus associated hospitalisation and mortality burden based on statistical modelling methods a systematic analysis:a systematic analysis

    Get PDF
    Abstract Background Statistical modelling studies based on excess morbidity and mortality are important for understanding RSV disease burden for age groups that are less frequently tested for RSV. We aimed to understand the full age spectrum of RSV morbidity and mortality burden based on statistical modelling studies, as well as the value of modelling studies in RSV disease burden estimation. Methods The databases Medline, Embase and Global Health were searched to identify studies published between January 1, 1995, and December 31, 2021, reporting RSV-associated excess hospitalisation or mortality rates of any case definitions using a modelling approach. All reported rates were summarised using median, IQR (Interquartile range) and range by age group, outcome and country income group; where applicable, a random-effects meta-analysis was conducted to combine the reported rates. We further estimated the proportion of RSV hospitalisations that could be captured in clinical databases. Results A total of 32 studies were included, with 26 studies from high-income countries. RSV-associated hospitalisation and mortality rates both showed a U-shape age pattern. Lowest and highest RSV acute respiratory infection (ARI) hospitalisation rates were found in 5–17 years (median: 1.6/100,000 population, IQR: 1.3–18.5) and < 1 year (2235.7/100,000 population, 1779.1–3552.5), respectively. Lowest and highest RSV mortality rates were found in 18–49 years (0.1/100,000 population, 0.06–0.2) and ≄ 75 years (80.0/100,000 population, 70.0–90.0) for high-income countries, respectively, and in 18–49 years (0.3/100,000 population, 0.1–2.4) and < 1 year (143.4/100,000 population, 143.4–143.4) for upper-middle income countries. More than 70% of RSV hospitalisations in children < 5 years could be captured in clinical databases whereas less than 10% of RSV hospitalisations could be captured in adults, especially for adults ≄ 50 years. Using pneumonia and influenza (P&I) mortality could potentially capture half of all RSV mortality in older adults but only 10–30% of RSV mortality in children. Conclusions Our study provides insights into the age spectrum of RSV hospitalisation and mortality. RSV disease burden using laboratory records alone could be substantially severely underreported for age groups ≄ 5 years. Our findings confirm infants and older adults should be prioritised for RSV immunisation programmes. Trial registration PROSPERO CRD42020173430

    Tumor suppressive microRNA-137 negatively regulates Musashi-1 and colorectal cancer progression

    Get PDF
    Stem cell marker, Musashi-1 (MSI1) is over-expressed in many cancer types; however the molecular mechanisms involved in MSI1 over-expression are not well understood. We investigated the microRNA (miRNA) regulation of MSI1 and the implications this regulation plays in colorectal cancer. MicroRNA miR-137 was identified as a MSI1-targeting microRNA by immunoblotting and luciferase reporter assays. MSI1 protein was found to be highly expressed in 79% of primary rectal tumors (n=146), while miR-137 expression was decreased in 84% of the rectal tumor tissues (n=68) compared to paired normal mucosal samples. In addition to reduced MSI1 protein, exogenous expression of miR-137 inhibited cell growth, colony formation, and tumorsphere growth of colon cancer cells. Finally, in vivo studies demonstrated that induction of miR-137 can decrease growth of human colon cancer xenografts. Our results demonstrate that miR-137 acts as a tumor-suppressive miRNA in colorectal cancers and negatively regulates oncogenic MSI1

    Is detection of enteropathogens and human or animal faecal markers in the environment associated with subsequent child enteric infections and growth: an individual participant data meta-analysis.

    Get PDF
    BACKGROUND: Quantifying contributions of environmental faecal contamination to child diarrhoea and growth faltering can illuminate causal mechanisms behind modest health benefits in recent water, sanitation, and hygiene (WASH) trials. We aimed to assess associations between environmental detection of enteropathogens and human or animal microbial source tracking markers (MSTM) and subsequent child health outcomes. METHODS: In this individual participant data meta-analysis we searched we searched PubMed, Embase, CAB Direct Global Health, Agricultural and Environmental Science Database, Web of Science, and Scopus for WASH intervention studies with a prospective design and concurrent control that measured enteropathogens or MSTM in environmental samples, or both, and subsequently measured enteric infections, diarrhoea, or height-for-age Z-scores (HAZ) in children younger than 5 years. We excluded studies that only measured faecal indicator bacteria. The initial search was done on Jan 19, 2021, and updated on March 22, 2023. One reviewer (AM) screened abstracts, and two independent reviewers (AM and RT) examined the full texts of short-listed articles. All included studies include at least one author that also contributed as an author to the present Article. Our primary outcomes were the 7-day prevalence of caregiver-reported diarrhoea and HAZ in children. For specific enteropathogens in the environment, primary outcomes also included subsequent child infection with the same pathogen ascertained by stool testing. We estimated associations using covariate-adjusted regressions and pooled estimates across studies. FINDINGS: Data from nine published reports from five interventions studies, which included 8603 children (4302 girls and 4301 boys), were included in the meta-analysis. Environmental pathogen detection was associated with increased infection prevalence with the same pathogen and lower HAZ (ΔHAZ -0·09 [95% CI -0·17 to -0·01]) but not diarrhoea (prevalence ratio 1·22 [95% CI 0·95 to 1·58]), except during wet seasons. Detection of MSTM was not associated with diarrhoea (no pooled estimate) or HAZ (ΔHAZ -0·01 [-0·13 to 0·11] for human markers and ΔHAZ -0·02 [-0·24 to 0·21] for animal markers). Soil, children's hands, and stored drinking water were major transmission pathways. INTERPRETATION: Our findings support a causal chain from pathogens in the environment to infection to growth faltering, indicating that the lack of WASH intervention effects on child growth might stem from insufficient reductions in environmental pathogen prevalence. Studies measuring enteropathogens in the environment should subsequently measure the same pathogens in stool to further examine theories of change between WASH, faecal contamination, and health. Given that environmental pathogen detection was predictive of infection, programmes targeting specific pathogens (eg, vaccinations and elimination efforts) can environmentally monitor the pathogens of interest for population-level surveillance instead of collecting individual biospecimens. FUNDING: The Bill & Melinda Gates Foundation and the UK Foreign and Commonwealth Development Office

    Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study

    Get PDF
    Background: Seasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middle-income countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018. Methods: We estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and population-based childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries. Findings: In 2018, among children under 5 years globally, there were an estimated 109·5 million influenza virus episodes (uncertainty range [UR] 63·1–190·6), 10·1 million influenza-virus-associated ALRI cases (6·8–15·1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000–1 415 000), 15 300 in-hospital deaths (5800–43 800), and up to 34 800 (13 200–97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries. Interpretation: A large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middle-income countries. Funding: WHO; Bill & Melinda Gates Foundation.Fil: Wang, Xin. University of Edinburgh; Reino UnidoFil: Li, You. University of Edinburgh; Reino UnidoFil: O'Brien, Katherine L.. University Johns Hopkins; Estados UnidosFil: Madhi, Shabir A.. University of the Witwatersrand; SudĂĄfricaFil: Widdowson, Marc Alain. Centers for Disease Control and Prevention; Estados UnidosFil: Byass, Peter. Umea University; SueciaFil: Omer, Saad B.. Yale School Of Public Health; Estados UnidosFil: Abbas, Qalab. Aga Khan University; PakistĂĄnFil: Ali, Asad. Aga Khan University; PakistĂĄnFil: Amu, Alberta. Dodowa Health Research Centre; GhanaFil: Azziz-Baumgartner, Eduardo. Centers for Disease Control and Prevention; Estados UnidosFil: Bassat, Quique. University Of Barcelona; EspañaFil: Abdullah Brooks, W.. University Johns Hopkins; Estados UnidosFil: Chaves, Sandra S.. Centers for Disease Control and Prevention; Estados UnidosFil: Chung, Alexandria. University of Edinburgh; Reino UnidoFil: Cohen, Cheryl. National Institute For Communicable Diseases; SudĂĄfricaFil: EchavarrĂ­a, Marcela Silvia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones MĂ©dicas e Investigaciones ClĂ­nicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Fasce, Rodrigo A.. Public Health Institute; ChileFil: Gentile, Angela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo GutiĂ©rrez"; ArgentinaFil: Gordon, Aubree. University of Michigan; Estados UnidosFil: Groome, Michelle. University of the Witwatersrand; SudĂĄfricaFil: Heikkinen, Terho. University Of Turku; FinlandiaFil: Hirve, Siddhivinayak. Kem Hospital Research Centre; IndiaFil: Jara, Jorge H.. Universidad del Valle de Guatemala; GuatemalaFil: Katz, Mark A.. Clalit Research Institute; IsraelFil: Khuri Bulos, Najwa. University Of Jordan School Of Medicine; JordaniaFil: Krishnan, Anand. All India Institute Of Medical Sciences; IndiaFil: de Leon, Oscar. Universidad del Valle de Guatemala; GuatemalaFil: Lucero, Marilla G.. Research Institute For Tropical Medicine; FilipinasFil: McCracken, John P.. Universidad del Valle de Guatemala; GuatemalaFil: Mira-Iglesias, Ainara. FundaciĂłn Para El Fomento de la InvestigaciĂłn Sanitaria; EspañaFil: MoĂŻsi, Jennifer C.. Agence de MĂ©decine PrĂ©ventive; FranciaFil: Munywoki, Patrick K.. No especifĂ­ca;Fil: OurohirĂ©, Millogo. No especifĂ­ca;Fil: Polack, Fernando Pedro. FundaciĂłn para la InvestigaciĂłn en InfectologĂ­a Infantil; ArgentinaFil: Rahi, Manveer. University of Edinburgh; Reino UnidoFil: Rasmussen, Zeba A.. National Institutes Of Health; Estados UnidosFil: Rath, Barbara A.. Vienna Vaccine Safety Initiative; AlemaniaFil: Saha, Samir K.. Child Health Research Foundation; BangladeshFil: SimĂ”es, Eric A.F.. University of Colorado; Estados UnidosFil: Sotomayor, Viviana. Ministerio de Salud de Santiago de Chile; ChileFil: Thamthitiwat, Somsak. Thailand Ministry Of Public Health; TailandiaFil: Treurnicht, Florette K.. University of the Witwatersrand; SudĂĄfricaFil: Wamukoya, Marylene. African Population & Health Research Center; KeniaFil: Lay-Myint, Yoshida. Nagasaki University; JapĂłnFil: Zar, Heather J.. University of Cape Town; SudĂĄfricaFil: Campbell, Harry. University of Edinburgh; Reino UnidoFil: Nair, Harish. University of Edinburgh; Reino Unid

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Building a Systematic Online Living Evidence Summary of COVID-19 Research

    Get PDF
    Throughout the global coronavirus pandemic, we have seen an unprecedented volume of COVID-19 researchpublications. This vast body of evidence continues to grow, making it difficult for research users to keep up with the pace of evolving research findings. To enable the synthesis of this evidence for timely use by researchers, policymakers, and other stakeholders, we developed an automated workflow to collect, categorise, and visualise the evidence from primary COVID-19 research studies. We trained a crowd of volunteer reviewers to annotate studies by relevance to COVID-19, study objectives, and methodological approaches. Using these human decisions, we are training machine learning classifiers and applying text-mining tools to continually categorise the findings and evaluate the quality of COVID-19 evidence

    Demographic, Economic, and Geographic Factors Associated with Uptake of the Earned Income Tax Credit

    No full text
    10.1007/s42972-022-00054-5Journal of Policy Practice and Research33241-25
    corecore